Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Surprising Details Of The Evolution Of Protein Translation

13.08.2008
A new study of transfer RNA, a molecule that delivers amino acids to the protein-building machinery of the cell, challenges long-held ideas about the evolutionary history of protein synthesis.

In the study, researchers report that the dual functions of transfer RNA (reading the genetic blueprint for a protein, and adding a specific amino acid to the protein as it is formed) appear to have originated independently of one another. The new findings are detailed in the July 30 Public Library of Science (PLoS) ONE.

University of Illinois crop sciences professor Gustavo Caetano-Anollés and postdoctoral researcher Feng-Jie Sun made the discovery by looking for clues to the evolution of protein translation in the sequence and structure of transfer RNA (tRNA).

“Structure is highly conserved, capturing information that is evolutionarily deep,” Caetano-Anollés said. “It was only logical to focus on transfer RNA, a molecule that is believed to be very ancient and is truly central to the entire protein synthesis machinery.”

During protein synthesis, tRNA’s dual function is reflected in its unique L-shaped structure. One end of the molecule decodes messenger RNA (a molecule that carries instructions for the sequence of amino acids in a protein), while the other transfers a specific amino acid to the growing protein chain.

In previous studies, scientist assumed that the two functional domains of tRNA had evolved together. Sun and Caetano-Anollés put this assumption to the test.

They began by constructing an evolutionary family tree based on the sequence and two-dimensional structures of tRNA molecules representing every domain of life (bacteria; the microbes known as archaea; and eucarya, the domain that includes animals, plants, fungi and many other organisms) as well as viruses.

There are several dozen tRNAs (each reads a specific region of the genetic blueprint for a protein and each carries only one of the 20-plus amino acids found in proteins) so the researchers looked for clues to their evolutionary histories by comparing their physical and functional traits.

They converted the unique features of the individual tRNA cloverleaf structures into coded characters, a process that allowed a computerized search for the most parsimonious (the simplest, most probable) tRNA family trees for different organismal lineages. In this way they were able to test competing evolutionary hypotheses against the data mined from the structure of the tRNA itself.

“Our findings uniquely focus on structure, the actual aspect of the molecule that encases its function,” Caetano-Anollés said.

The analysis indicated that the two functions of the tRNA had different evolutionary histories, Sun said, which suggests that they were acquired at different points in time.

The study predicted that the loading of amino acids on tRNA molecules preceded the refinement of the genetic code into codons, the regions on the messenger RNA that are read by individual tRNAs.

“For the first time, we believe we make this distinction between the evolution of the genetic code (codon discovery) and the evolution of amino acid charging,” Sun said.

Gustavo Caetano-Anollés is an affiliate of the U. of I. Institute for Genomic Biology.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>