Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Reveals How Snakes Slither on Flat Terrain

Snakes use both friction generated by their scales and redistribution of their weight to slither along flat surfaces, researchers at New York University and the Georgia Institute of Technology have found.

Their findings, which appear in the latest issue of the Proceedings of the National Academy of Sciences, run counter to previous studies that have shown snakes move by pushing laterally against rocks and branches.

“We found that snakes’ belly scales are oriented so that snakes resist sliding toward their tails and flanks,” said the paper’s lead author, David Hu, a former post-doctoral researcher at NYU’s Courant Institute of Mathematical Sciences and now an assistant professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering.

“These scales give the snakes a preferred direction of motion, which makes snake movement a lot like that of wheels, cross-country skis, or ice skates. In all these examples, sliding forwards takes less work than does sliding sideways.”

The study’s other co-authors were Jasmine Nirody and Terri Scott, both undergraduate researchers at NYU, Michael Shelley, a professor of mathematics and neural science and the Lilian and George Lyttle Professor of Applied Mathematics at Courant.

The study centered on the frictional anisotropy—or resistance to sliding in certain directions—of a snake’s belly scales. While previous investigators had suggested that the frictional anisotropy of these scales might play a role in locomotion over flat surfaces, the details of this process had not been understood.

To explore this matter, the researchers first developed a theoretical model of a snake’s movement. The model determined the speed of a snake’s center of mass as a function of the speed and size of its body waves, taking into account the laws of friction and the scales’ frictional anisotropy. The model suggested that a snake’s motion arises by the interaction of surface friction and its internal body forces.

To confirm movement as predicted by the model, the researchers then measured the sliding resistance of snake scales and monitored the movement of snakes through a series of experiments on flat and inclined surfaces. They employed video and time-lapse photography to gauge their movements.

The results showed a close relationship between what the model predicted and the snakes’ actual movements. The theoretical predictions of the model were generally consistent with the snakes’ actual body speeds on both flat and inclined surfaces.

Abby Vogel | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>