Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals new mechanism that might promote cancer's growth and spread in the body

11.07.2012
  • Researchers have discovered a previously unknown mechanism that promotes the growth and spread of cancer.
  • The mechanism involves a new role for small regulatory molecules called microRNA.
  • The findings suggest a new strategy for treating cancer and perhaps diseases of the immune system.
Tiny vesicles released by tumors cells are taken up by healthy immune cells, causing the immune cells to discharge chemicals that foster cancer-cell growth and spread, according to a study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) and at Children's Hospital in Los Angeles.

The study uses lung cancer cells to show that the vesicles contain potent regulatory molecules called microRNA, and that the uptake of these molecules by immune cells alters their behavior. The process in humans involves a fundamental receptor of the immune system called Toll-like receptor 8 (TLR8).

The findings, published in the early edition of the Proceedings of the National Academy of Sciences, suggest a new strategy for treating cancer and diseases of the immune system, the researchers say, and a new role for microRNA in the body.

"This study reveals a new function of microRNA, which we show binds to a protein receptor," says principal investigator Dr. Carlo Croce, director of Ohio State's Human Cancer Genetics program and a member of the OSUCCC – James Molecular Biology and Cancer Genetics program. "This tells us that some cancer-released microRNAs can bind and activate a receptor in a hormone-like fashion, and this has not been seen before."

MicroRNAs help control the type and amount of proteins that cells make, and they typically do this by binding with the messenger-RNA that encodes a protein.

"In this study we discovered a completely new mechanism used by cancer to grow and spread, therefore we can develop new drugs that fight tumors by entering this newly identified breach in cancer's fortress," says co-corresponding author and first author Dr. Muller Fabbri, assistant professor of Pediatrics and Molecular Biology and Immunology at the Keck School of Medicine of the University of Southern California.

"Equally exciting, we show that this mechanism involves a fundamental receptor of the immune system, TLR8, suggesting that the implications of this discovery may extend to other diseases such as autoimmune and inflammatory diseases," Fabbri says.

Key findings of the study include the following:

Lung tumor cells secrete microRNA-21 and microRNA-29a in vesicles called exosomes, and these exosomes are taken up by immune cells called macrophages located where tumor tissue abuts normal tissue.

In human macrophages, microRNA-29a and microRNA-21 bind with TLR8, causing the macrophages to secrete tumor-necrosis-factor alpha and interleukin-6, two cytokines that promote inflammation.

Increased levels of the two cytokines were associated with an increase in the number of tumors per lung in an animal model, while a drop in those levels led to a drop in the number per lung, suggesting that they also play a role in metastasis.

Funding from the NIH/National Cancer Institute (grants CA150297, CA135030, CA124541, and CA148302) and a 2009 Kimmel Foundation Fellowship supported this research.

Other researchers involved in this study were Alessio Paone, Federica Calore, Roberta Galli, Eugenio Gaudio, Ramasamy Santhanam, Francesca Lovat, Paolo Fadda, Charlene Mao, Nicola Zanesi, Melissa Crawford, Gulcin H. Ozer, Dorothee Wernicke, Hansjuerg Alder, Michael A. Caligiuri, Patrick Nana-Sinkam and Danilo Perrotti of Ohio State University; and Gerard J. Nuovo of Phylogeny, Inc.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 210-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S.News & World Report.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>