Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals major genetic differences between blood and tissue cells

20.07.2009
Important questions raised about genetic research based only on blood samples; new treatment in vascular disease foreseen at the same time

Research by a group of Montreal scientists calls into question one of the most basic assumptions of human genetics: that when it comes to DNA, every cell in the body is essentially identical to every other cell. Their results appear in the July issue of the journal Human Mutation.

This discovery may undercut the rationale behind numerous large-scale genetic studies conducted over the last 15 years, studies which were supposed to isolate the causes of scores of human diseases.

Except for cancer, samples of diseased tissueare difficult or even impossible to take from living patients. Thus, the vast majority of genetic samples used in large-scale studies come in the form of blood. However, if it turns out that blood and tissue cells do not match genetically, these ambitious and expensive genome-wide association studies may prove to have been essentially flawed from the outset.

This discovery sprang from an investigaton into the underlying genetic causes of abdominal aortic aneurysms (AAA) led by Dr. Morris Schweitzer, Dr. Bruce Gottlieb, Dr. Lorraine Chalifour and colleagues at McGill University and the affiliated Lady Davis Institute for Medical Research at Montreal's Jewish General Hospital. The researchers focused on BAK, a gene that controls cell death.

What they found surprised them.

AAA is one of the rare vascular diseases where tissue samples are removed as part of patient therapy. When they compared them, the researchers discovered major differences between BAK genes in blood cells and tissue cells coming from the same individuals, with the suspected disease "trigger" residing only in the tissue. Moreover, the same differences were later evident in samples derived from healthy individuals.

"In multi-factorial diseases other than cancer, usually we can only look at the blood," explained Gottlieb, a geneticist with McGill's Centre for Translational Research in Cancer. "Traditionally when we have looked for genetic risk factors for, say, heart disease, we have assumed that the blood will tell us what's happening in the tissue. It now seems this is simply not the case."

"From a genetic perspective, therapeutic implications aside, the observation that not all cells are the same is extremely important. That's the bottom line," he added. "Genome-wide association studies were introduced with enormous hype several years ago, and people expected tremendous breakthroughs. They were going to draw blood samples from thousands or hundreds of thousands of individuals, and find the genes responsible for disease.

"Unfortunately, the reality of these studies has been very disappointing, and our discovery certainly could explain at least one of the reasons why."

AAA is a localized widening and weakening of the abdominal aorta, and primarily affects elderly caucasian men who smoke, have high blood pressure and high cholesterol levels. It often has no symptoms, but can lead to aortic ruptures which are fatal in 90 per cent of cases.

If the mutations discovered in the tissue cells actually predispose for AAA, they present an ideal target for new therapies, and may have even wider therapeutic implications.

"This will probably have repercussions for vascular disease in general," said Schweitzer, of McGill's Department of Medicine. "We have not yet looked at coronary or cerebral arteries, but I would suspect that this mutation may be present across the board."

Schweitzer is optimistic that this discovery may lead to new treatments for vascular disease in the near to medium term.

"The timeline might be five to 10 years," he said. "We have to do in-vitro cell culture experiments first, prove it in an animal model, and then develop a molecule or protein which will affect the mutated gene product. This is the first step, but it's an important step."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>