Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals critical similarity between two types of do-it-all stem cells

12.09.2011
Ever since human induced pluripotent stem cells were first derived in 2007, scientists have wondered whether they were functionally equivalent to embryonic stem cells, which are sourced in early-stage embryos.

Both cell types have the ability to differentiate into any cell in the body, but their origins – in embryonic and adult tissue – suggest that they are not identical.

Although both cell types have great potential in basic biological research and in cell- and tissue-replacement therapy, the newer form, called IPS cells, have two advantages. They face less ethical constraint, as they do not require embryos. And they could be more useful in cell replacement therapies: growing them from the patient's own cells would avoid immune rejection.

But until IPS cells are proven to have the same traits as embryonic stem cells, they cannot be considered to be identical.

In a study published today (Sunday, Sept. 11), researchers at the University of Wisconsin-Madison report the first full measurement of the proteins made by both types of stem cells. In a study that looked at four embryonic stem cells and four IPS cells, the proteins turned out to be 99 percent similar, says Joshua Coon, an associate professor of chemistry and biomolecular chemistry who directed the project.

"We looked at RNA, at proteins, and at structures on the proteins that help regulate their activity, and saw substantial similarity between the two stem-cell types," he says.

Proteins are complex molecules made by cells for innumerable structural and chemical purposes, and the new study measured more than 6,000 individual proteins using highly accurate mass spectrometry, a technique that measures mass as the first step of identifying proteins.

The study in Nature Methods, published online, is the first comprehensive comparison of proteins in the two stem cell types, says Doug Phanstiel, who is now at Stanford University, and worked with Justin Brumbaugh on the project as graduate students at UW-Madison.

"From a biological standpoint, what is novel is that this is the first proteomic comparison of embryonic stem cells and IPS cells," says Phanstiel, referring to the study of which proteins a cell produces.

In essence, every cell in the body has the genes to make any protein the body might need, but cells make only the proteins that further their own biological role. Cells regulate the formation and activity of proteins in three ways: first, by controlling the production of RNA, a molecule that transfers the DNA code to protein-making structures; second, by controlling the quantity of each protein made; and third, by adding structures to the protein that regulate when it will be active.

The new study measured each of these activities, Phanstiel says.

"And because we compared four lines of each type of stem cell, and the comparisons were run three times, the statistics are extremely robust," he adds.

The new report, Coon says, suggests that embryonic stem cells and IPS cells are quite similar. According to some measurements, the protein production of an embryonic stem cell was closer to that of an IPS cell than to a second embryonic stem cell.

The ability to measure proteins in such detail emerged from improved ways to measure mass, Coon says.

"New technical developments in both our ability to measure a protein's mass – accurate to the third or fourth decimal place – and to compare the proteins from up to eight different cell lines at a time -- permitted this important comparison for the first time," says Coon.

The study is not the last word in determining the similarity of the two types of pluripotent stem cells, says Coon, who worked with UW-Madison stem-cell pioneer James Thomson, on the project.

Because clinical uses of either type of stem cells will require that they be transformed into more specialized cells, researchers still need to know more about protein production after a stem cell is differentiated into, for example, a neuron or heart muscle cell.

This technology, Coon says, "is now well-positioned to study how closely molecules contained in these promising cells change after they are differentiated into the cells that do the work in our bodies – a critical next step in regenerative medicine."

David Tenenbaum, (608) 265-8549, djtenenb@wisc.edu

Joshua Coon | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>