Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study gives more proof that intelligence is largely inherited

19.03.2009
UCLA researchers find that genes determine brain's processing speed
They say a picture tells a thousand stories, but can it also tell how smart you are? Actually, say UCLA researchers, it can.

In a study published in the Journal of Neuroscience Feb. 18, UCLA neurology professor Paul Thompson and colleagues used a new type of brain-imaging scanner to show that intelligence is strongly influenced by the quality of the brain's axons, or wiring that sends signals throughout the brain.

The faster the signaling, the faster the brain processes information. And since the integrity of the brain's wiring is influenced by genes, the genes we inherit play a far greater role in intelligence than was previously thought.

Genes appear to influence intelligence by determining how well nerve axons are encased in myelin — the fatty sheath of "insulation" that coats our axons and allows for fast signaling bursts in our brains. The thicker the myelin, the faster the nerve impulses.

Thompson and his colleagues scanned the brains of 23 sets of identical twins and 23 sets of fraternal twins. Since identical twins share the same genes while fraternal twins share about half their genes, the researchers were able to compare each group to show that myelin integrity was determined genetically in many parts of the brain that are key for intelligence. These include the parietal lobes, which are responsible for spatial reasoning, visual processing and logic, and the corpus callosum, which pulls together information from both sides of the body.

The researchers used a faster version of a type of scanner called a HARDI (high-angular resolution diffusion imaging) — think of an MRI machine on steroids — that takes scans of the brain at a much higher resolution than a standard MRI. While an MRI scan shows the volume of different tissues in the brain by measuring the amount of water present, HARDI tracks how water diffuses through the brain's white matter — a way to measure the quality of its myelin.

"HARDI measures water diffusion," said Thompson, who is also a member of the UCLA Laboratory of Neuro-Imaging. "If the water diffuses rapidly in a specific direction, it tells us that the brain has very fast connections. If it diffuses more broadly, that's an indication of slower signaling, and lower intelligence."

"So it gives us a picture of one's mental speed," he said.

Because the myelination of brain circuits follows an inverted U-shaped trajectory, peaking in middle age and then slowly beginning to decline, Thompson believes identifying the genes that promote high-integrity myelin is critical to forestalling brain diseases like multiple sclerosis and autism, which have been linked to the breakdown of myelin.

"The whole point of this research," Thompson said, "is to give us insight into brain diseases."

He said his team has already narrowed down the number of gene candidates that may influence myelin growth.

And could this someday lead to a therapy that could make us smarter, enhancing our intelligence?

"It's a long way off but within the realm of the possible," Thompson said.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu
http://www.loni.ucla.edu/~thompson/HARDI/PDF/hardi3.jpg

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>