Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study points to key genetic driver of severe allergic asthma

30.08.2010
Scientists have identified a genetic basis for determining the severity of allergic asthma in experimental models of the disease.

The study may help in the search for future therapeutic strategies to fight a growing medical problem that currently lacks effective treatments, researchers from Cincinnati Children's Hospital Medical Center report in the Aug. 29 Nature Immunology.

The prevalence of asthma has been increasing in recent years, according to Marsha Wills-Karp, Ph.D., director of the division of Immunobiology at Cincinnati Children's and the study's senior investigator. The disease can be triggered in susceptible people by a variety of environmental contaminants – such as cigarette smoke, allergens and airborne pollution.

Dr. Wills-Karp's research team has found a molecular tipping point that upsets a delicate balance between underlying mild disease and more severe asthma. They identify the pro-inflammatory protein, interleukin-17 (IL-17A), as the chief culprit behind severe asthma-like symptoms in mice.

"This study suggests that at some point it may be possible to treat or prevent severe forms of asthma by inhibiting pathways that drive the production of IL-17A," Dr. Wills-Karp said.

The disease process appears to begin when airway exposure to environmental allergens causes dysfunctional regulation of a gene called complement factor 3 (C3), which works through a part of the immune system called the complement activation cascade. This leads to overzealous production of IL-17A by airway cells and sets off what the scientists describe as an "amplification loop," when IL-17A in turn induces more C3 production at the airway surface.

The amplification loop perpetuates increasing inflammatory responses involving irregular T helper cells, other interleukin proteins (IL-13 and IL-23), as well as airway hyper-responsiveness and airflow obstruction.

Previous studies have shown the presence of IL-17A proteins in human asthma but no apparent role. Earlier research involving mouse models of the disease has suggested possible roles for IL-17A in asthma, and this study expands on those findings.

The current study involved mice bred genetically to closely resemble people susceptible to severe asthma. Mouse airways were exposed to house dust mite allergen extract to gauge the severity of disease and analyze biochemical responses in airway tissues.

One group of mice was deficient in the immune system gene C5, which normally prevents harmful airway immune responses to inhaled environmental allergens. These mice generated high numbers of T helper cells (known specifically in this instance as TH17 cells) that produced significant IL-17A and caused airway hyper-responsiveness. When researchers blocked IL-17A production in this group, the mice had less airway hyper-responsiveness.

A second group of mice was deficient in the C3aR gene (a receptor for C3), which regulates the dysfunctional response to airway allergens that lead to asthma. These mice had fewer IL-17A producing TH17 cells and less airway hyper-responsiveness. When researchers increased the amount of IL-17A in the airways of this group, the mice experienced greater airway hyper-responsiveness.

As Dr. Wills-Karp and her colleagues continue their research, they will study the relationship between C3 and IL-17A in severe asthmatics, and explore the effectiveness of targeting either the C3 or IL-17A pathways for the treatment of severe asthma. A drug that blocks the function of C3 is currently under development and testing outside of Cincinnati Children's for treatment of the eye disease macular degeneration.

Funding support for the study came from the National Institutes of Health and the Parker B. Francis Fellowship Program.

Also collaborating on the study were co-first authors Stephane Lajoie, Ph.D., and Ian Lewkowich, Ph.D., research fellows in Dr. Wills-Karp's laboratory.

About Cincinnati Children's

Cincinnati Children's Hospital Medical Center is one of just eight children's hospitals named to the Honor Roll in U.S. News and World Report's 2010-11 Best Children's Hospitals. It is ranked #1 for digestive disorders and highly ranked for its expertise in pulmonology, cancer, neonatology, heart and heart surgery, neurology and neurosurgery, diabetes and endocrinology, orthopedics, kidney disorders and urology. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for quality and transformation work by Leapfrog, The Joint Commission, the Institute for Healthcare Improvement, the federal Agency for Healthcare Research and Quality, and by hospitals and health organizations it works with globally. Additional information can be found at www.cincinnatichildrens.org.

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org
http://www.cincinnatichildrens.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>