Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study overturns orthodoxy on how macrophages kill bacteria

28.04.2009
For decades, microbiologists assumed that macrophages, immune cells that can engulf and poison bacteria and other pathogens, killed microbes by damaging their DNA. A new study from the University of Illinois disproves that.

The study, published in the journal PLoS One, shows that macrophages focus their most potent poisons, known as reactive oxygen species (ROS), on targets outside the cytoplasm.

Macrophages are voracious eaters that “swallow” cellular debris and invading organisms. They kill microbes with ROS. All aerobic cells inadvertently produce ROS that can, if left unchecked, damage DNA and other cellular components and cause cell death. Bacteria and animal cells contain special enzymes, called superoxide dismutases, which neutralize an important ROS, called superoxide. Macrophages have harnessed these lethal compounds, dumping large quantities of superoxide onto engulfed bacteria to kill them.

Although macrophages direct ROS against invading bacteria, Salmonella typhimurium, the microbe used in the study, is adept at evading these defenses. The most virulent strains of S. typhimurium can survive and even propagate inside macrophages, eventually emerging to infect more cells.

“It’s been assumed that reactive oxygen species kill the bacteria by going into the cytoplasm and causing DNA damage,” said medical microbiology professor James Slauch, who led the study. “You can find this idea over and over again in review articles and many immunological textbooks, but with no real data to back it up.”

To test this hypothesis, Slauch and graduate student Maureen Craig looked at the superoxide dismutases that are part of the bacterial defense against ROS. There are two such enzymes in the cytoplasm of S. typhimurium, called SodA and SodB, and another, SodC, in the periplasm, the space between the bacteria’s inner and outer membranes.

One way to understand the role of an enzyme is to see what happens when it is absent, so the researchers looked at mutant S. typhimurium that had the genes for SodA, SodB, or both enzymes, deleted. Deleting the gene for SodA seemed to make no difference, but the SodB mutants were less able to survive and cause disease in a mouse. The double mutants were even more impaired. They were much, much less likely to survive in the mouse than bacteria with only the SodB gene missing. These findings “offer genetic proof” that both enzymes “are involved in the same process,” Slauch said.

The fact that the bacterial mutants were less likely to survive in a mouse did not prove, however, that the missing enzymes were protecting the bacteria from ROS generated in the mouse macrophages, Slauch said.

“You get the same result if you grow these mutants in the laboratory in aerobic conditions,” he said.

Furthermore, the SodA/SodB mutant bacteria were profoundly weakened – even in a mouse that was unable to produce the potent ROS superoxide in its macrophages. These results suggest that the superoxide dismutases in the bacterial cytoplasm are most likely protecting the bacterium from its own, naturally occurring ROS, Slauch said.

In contrast, deleting the gene encoding the periplasmic superoxide dismutase, SodC, conferred the same defect regardless of whether the cytoplasmic SodA/SodB were present or absent, showing that its function is independent of the cytoplasm.

Moreover, strains lacking SodC were impaired only in the presence of superoxide produced in macrophages; there was no impairment in laboratory media or in mice lacking the ability to make superoxide.

This suggests that the superoxide and other reactive oxygen species are not making it from the macrophage into the bacterial cytoplasm, Slauch said.

“We conclude from all this data that the most sensitive target of ROS in the macrophages lies outside the cytoplasm,” Slauch said. “We don’t know what that target is, but it’s clearly not in the cytoplasm.”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

nachricht How the kidneys produce concentrated urine
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>