Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers insight into the origin of the genetic code, team reports

27.08.2013
An analysis of enzymes that load amino acids onto transfer RNAs – an operation at the heart of protein translation – offers new insights into the evolutionary origins of the modern genetic code, researchers report.

Their findings appear in the journal PLOS ONE.

The researchers focused on aminoacyl tRNA synthetases, enzymes that “read” the genetic information embedded in transfer RNA molecules and attach the appropriate amino acids to those tRNAs. Once a tRNA is charged with its amino acid, it carries it to the ribosome, a cellular “workbench” on which proteins are assembled, one amino acid at a time.

Synthetases charge the amino acids with high-energy chemical bonds that speed the later formation of new peptide (protein) bonds. Synthetases also have powerful editing capabilities; if the wrong amino acid is added to a tRNA, the enzyme quickly dissolves the bond.

“Synthetases are key interpreters and arbitrators of how nucleic-acid information translates into amino-acid information,” said Gustavo Caetano-Anollés, a University of Illinois professor of crop sciences and of bioinformatics. Caetano-Anollés, who led the research, also is a professor in the U. of I. Institute for Genomic Biology. “Their editing capabilities are about 100-fold more rigorous than the proofreading and recognition that occurs in the ribosome. Consequently, synthetases are responsible for establishing the rules of the genetic code.”

The researchers used an approach developed in the Caetano-Anollés lab to determine the relative ages of different protein regions, called domains. Protein domains are the gears, springs and motors that work together to keep the protein machinery running.

Caetano-Anollés and his colleagues have spent years elucidating the evolution of protein and RNA domains, determining their relative ages by analyzing their utilization in organisms from every branch of the tree of life. The researchers make a simple assumption: Domains that appear in only a few organisms or groups of organisms are likely younger than domains that are more widely employed. The most universally utilized domains – those that appear in organisms from every branch of the tree of life – are likely the most ancient.

The researchers used their census of protein domains to establish the relative ages of the domains that make up the synthetases. They found that those domains that load amino acids onto the tRNAs (and edit them when mistakes are made) are more ancient than the domains that recognize the region on the tRNA, called an anticodon, that tells the synthetase which amino acid that tRNA should carry.

“Remarkably, we also found that the most ancient domains of the synthetases were structurally analogous to modern enzymes that are involved in non-ribosomal protein synthesis, and to other enzymes that are capable of making dipeptides,” Caetano-Anollés said.

The researchers hypothesize that ancient protein synthesis involved enzymes that looked a lot like today’s synthetases, perhaps working in conjunction with ancient tRNAs.

Researchers have known for decades that rudimentary protein synthesis can occur without the involvement of the ribosome, Caetano-Anollés said. But few if any have looked to the enzymes that catalyze these reactions for evidence of the evolutionary origins of protein synthesis.

Alerted to the potential importance of dipeptide formation in early protein synthesis, the researchers next looked for patterns of frequently used dipeptides in the sequences of modern proteins. They focused only on proteins for which scientists have collected the most complete and accurate structural information.

“The analysis revealed an astonishing fact,” Caetano-Anollés said. “The most ancient protein domains were enriched in dipeptides with amino acids encoded by the most ancient synthetases. And these ancient dipeptides were present in rigid regions of the proteins.”

The domains that appeared after the emergence of the genetic code (which Caetano-Anollés ties to the emergence of the tRNA anticodon) “were enriched in dipeptides that were present in highly flexible regions,” he said.

Thus, genetics is associated with protein flexibility, he said.

“Our study offers an explanation for why there is a genetic code,” Caetano-Anollés said. Genetics allowed proteins “to become flexible, thereby gaining a world of new molecular functions.”

Editor’s notes: To reach Gustavo Caetano-Anollés, call 217-333-8172; email gca@illinois.edu.

The paper, “Structural Phylogenomics Retrodicts the Origin of the Genetic Code and Uncovers the Impact of Protein Flexibility,” is available online.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0072225

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>