Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers clearest picture yet of how HIV defeats a cellular defender

04.03.2016

A new study offers the first atomic-scale view of an interaction between the HIV capsid - the protein coat that shepherds HIV into the nucleus of human cells - and a host protein known as cyclophilin A. This interaction is key to HIV infection, researchers say. A paper describing the research appears in the journal Nature Communications.

Cyclophilin A is found in most tissues of the human body, where it plays a role in the inflammatory response, immunity and the folding and trafficking of other proteins. When it fails to work properly or is overproduced in cells, cyclophilin A also can contribute to diseases such as rheumatoid arthritis, asthma, cancer and cardiovascular disease. It also facilitates some viral infections, including HIV.


The naked HIV capsid, left, would be quickly detected and eliminated from the cell, but a host protein, cyclophilin A, in red in the image on the right, binds to the capsid and enables it to transit through the cell undetected.

Graphic by Juan Perilla

"We have known for some time that cyclophilin A plays a role in HIV infection," said University of Illinois physics professor Klaus Schulten, who led the new study with postdoctoral researcher Juan R. Perilla and University of Pittsburgh professor Peijun Zhang and postdoctoral researcher Chuang Liu.

The HIV capsid somehow tricks this cellular protein into providing cover for it as it transits through the cell and makes its way to the nucleus, Schulten said. Once there, the capsid interacts with a nuclear pore that offers an entrance to the cell's nucleus. The virus uses the pore as a channel to inject its genetic material into the nucleus and commandeer the cell.

Studies in cell culture have found that the virus rarely makes it to the nucleus without its cyclophilin disguise. Drugs that interfere with cyclophilin also reduce HIV infections in cell culture. Such drugs cannot be used in human HIV patients because they dampen the immune response.

In the new study, the researchers used a massive computer model of the HIV capsid, which they developed in a 2013 study. Building this model meant simulating the interactions of 64 million atoms, a feat that required the use of Blue Waters, a petascale supercomputer at the National Center for Supercomputing Applications at the U. of I.

For the new study, the team used Blue Waters as well as the Titan supercomputer at Oak Ridge National Laboratory to simulate the interactions between cyclophilin A and the HIV capsid. The 3-D structure of cyclophilin A was known from previous investigations.

"We knew every atom of the underlying capsid, and then we put the cyclophilin on top of that, of which we also knew every atom," Schulten said.

The simulations revealed that cyclophilin A binds to the capsid in two ways. First, there is the "classic" binding site, one revealed decades earlier in crystallography studies. But in some places, a single cyclophilin A protein also bound the capsid at a second site, forming a bridge between two hexamers. (The HIV capsid is made up of a lattice of protein hexamers and pentamers.) Cyclophilin's bridging behavior occurred only in highly curved regions of the capsid, the researchers found.

Further research with NMR spectroscopy, which can detect unique chemical interactions, corroborated the existence of a second binding site.

By varying the amount of cyclophilin A added to the HIV capsid in their simulations, the researchers also saw that cyclophilin did not completely coat the HIV capsid. At high concentrations, individual cyclophilin molecules attached to the capsid interfered with others, disrupting their ability to bind.

Laboratory experiments also showed that having too little or too much cyclophilin A interfered with the virus's ability to infect cells.

"What we think is happening is, where there is no cyclophilin the capsid is naked, so the cell can recognize it and trigger a process that destroys the virus," Perilla said. "But if the capsid is fully occupied by cyclophilin A, it prevents recognition by the nuclear pore complex. So there is an optimal amount of cyclophilin bound to the capsid such that it allows the HIV infection to go forward."

"The HIV capsid has to show some of its surface to the nuclear pore complex so that it docks there properly and can inject its genetic material into the nucleus," Schulten said. "Now, we understand a little bit better the HIV virus' strategy for evading cellular defenses. That gives insight into battling the system."

###

Schulten is an affiliate of the Beckman Institute for Advanced Science and Technology and leader of the Theoretical and Computational Biophysics Group at Illinois.

The National Institute of General Medical Sciences at the National Institutes of Health, the National Science Foundation, the Israeli Science Foundation and the U.S. Department of Energy supported this research.

Editor's notes:

To reach Klaus Schulten, call 217-244-1604; email schulten@illinois.edu.

To reach Juan Perilla, call 217-244-7403; email jperilla@illinois.edu.

The paper "Cyclophilin a stabilizes the HIV-1 capsid through a novel non-canonical binding site" is available from the U. of I. News Bureau.

Media Contact

Diana Yates
diya@illinois.edu
217-333-5802

 @NewsAtIllinois

http://www.illinois.edu 

Diana Yates | EurekAlert!

Further reports about: HIV HIV infection cyclophilin genetic material

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>