Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers clearest picture yet of how HIV defeats a cellular defender

04.03.2016

A new study offers the first atomic-scale view of an interaction between the HIV capsid - the protein coat that shepherds HIV into the nucleus of human cells - and a host protein known as cyclophilin A. This interaction is key to HIV infection, researchers say. A paper describing the research appears in the journal Nature Communications.

Cyclophilin A is found in most tissues of the human body, where it plays a role in the inflammatory response, immunity and the folding and trafficking of other proteins. When it fails to work properly or is overproduced in cells, cyclophilin A also can contribute to diseases such as rheumatoid arthritis, asthma, cancer and cardiovascular disease. It also facilitates some viral infections, including HIV.


The naked HIV capsid, left, would be quickly detected and eliminated from the cell, but a host protein, cyclophilin A, in red in the image on the right, binds to the capsid and enables it to transit through the cell undetected.

Graphic by Juan Perilla

"We have known for some time that cyclophilin A plays a role in HIV infection," said University of Illinois physics professor Klaus Schulten, who led the new study with postdoctoral researcher Juan R. Perilla and University of Pittsburgh professor Peijun Zhang and postdoctoral researcher Chuang Liu.

The HIV capsid somehow tricks this cellular protein into providing cover for it as it transits through the cell and makes its way to the nucleus, Schulten said. Once there, the capsid interacts with a nuclear pore that offers an entrance to the cell's nucleus. The virus uses the pore as a channel to inject its genetic material into the nucleus and commandeer the cell.

Studies in cell culture have found that the virus rarely makes it to the nucleus without its cyclophilin disguise. Drugs that interfere with cyclophilin also reduce HIV infections in cell culture. Such drugs cannot be used in human HIV patients because they dampen the immune response.

In the new study, the researchers used a massive computer model of the HIV capsid, which they developed in a 2013 study. Building this model meant simulating the interactions of 64 million atoms, a feat that required the use of Blue Waters, a petascale supercomputer at the National Center for Supercomputing Applications at the U. of I.

For the new study, the team used Blue Waters as well as the Titan supercomputer at Oak Ridge National Laboratory to simulate the interactions between cyclophilin A and the HIV capsid. The 3-D structure of cyclophilin A was known from previous investigations.

"We knew every atom of the underlying capsid, and then we put the cyclophilin on top of that, of which we also knew every atom," Schulten said.

The simulations revealed that cyclophilin A binds to the capsid in two ways. First, there is the "classic" binding site, one revealed decades earlier in crystallography studies. But in some places, a single cyclophilin A protein also bound the capsid at a second site, forming a bridge between two hexamers. (The HIV capsid is made up of a lattice of protein hexamers and pentamers.) Cyclophilin's bridging behavior occurred only in highly curved regions of the capsid, the researchers found.

Further research with NMR spectroscopy, which can detect unique chemical interactions, corroborated the existence of a second binding site.

By varying the amount of cyclophilin A added to the HIV capsid in their simulations, the researchers also saw that cyclophilin did not completely coat the HIV capsid. At high concentrations, individual cyclophilin molecules attached to the capsid interfered with others, disrupting their ability to bind.

Laboratory experiments also showed that having too little or too much cyclophilin A interfered with the virus's ability to infect cells.

"What we think is happening is, where there is no cyclophilin the capsid is naked, so the cell can recognize it and trigger a process that destroys the virus," Perilla said. "But if the capsid is fully occupied by cyclophilin A, it prevents recognition by the nuclear pore complex. So there is an optimal amount of cyclophilin bound to the capsid such that it allows the HIV infection to go forward."

"The HIV capsid has to show some of its surface to the nuclear pore complex so that it docks there properly and can inject its genetic material into the nucleus," Schulten said. "Now, we understand a little bit better the HIV virus' strategy for evading cellular defenses. That gives insight into battling the system."

###

Schulten is an affiliate of the Beckman Institute for Advanced Science and Technology and leader of the Theoretical and Computational Biophysics Group at Illinois.

The National Institute of General Medical Sciences at the National Institutes of Health, the National Science Foundation, the Israeli Science Foundation and the U.S. Department of Energy supported this research.

Editor's notes:

To reach Klaus Schulten, call 217-244-1604; email schulten@illinois.edu.

To reach Juan Perilla, call 217-244-7403; email jperilla@illinois.edu.

The paper "Cyclophilin a stabilizes the HIV-1 capsid through a novel non-canonical binding site" is available from the U. of I. News Bureau.

Media Contact

Diana Yates
diya@illinois.edu
217-333-5802

 @NewsAtIllinois

http://www.illinois.edu 

Diana Yates | EurekAlert!

Further reports about: HIV HIV infection cyclophilin genetic material

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>