Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Complete RNA Collection of Fruit Fly Uncovers Unprecedented Complexity

20.03.2014

IU plays key role in consortium; 1,468 new genes discovered

Scientists from Indiana University are part of a consortium that has described the transcriptome of the fruit fly Drosophila melanogaster in unprecedented detail, identifying thousands of new genes, transcripts and proteins.


IU DROSOPHILA GENOMICS RESEARCH CENTER

Image of a stained Drosophila cell.

In the new work, published Sunday in the journal Nature, scientists studied the transcriptome -- the complete collection of RNAs produced by a genome -- at different stages of development, in diverse tissues, in cells growing in culture, and in flies stressed by environmental contaminants. To do so, they used contemporary sequencing technology to sequence all of the expressed RNAs in greater detail than ever before possible.

The paper shows that the Drosophila genome is far more complex than previously suspected and suggests that the same will be true of the genomes of other higher organisms. The paper also reports a number of novel, particular results: that a small set of genes used in the nervous system are responsible for a disproportionate level of complexity; that long regulatory and so-called “antisense” RNAs are especially prominent during gonadal development; that “splicing factors” (proteins that control the maturation of RNAs by splicing) are themselves spliced in complex ways; and that the Drosophila transcriptome undergoes large and interesting changes in response to environmental stresses.

The importance of Drosophila melanogaster as a model system cannot be overstated. Using it, the mechanisms of heredity were worked out about 100 years ago. Today, as biologists have developed increasing appreciation of how well genes and critical life processes are conserved over long evolutionary distances, flies have emerged as critical tools for understanding human biology and disease. Drosophila research is an area that has long had associations with IU, beginning with Nobel Laureate Herman J. Muller.

IU has 10 co-authors on the paper from the IU Bloomington College of Arts and Sciences’ Department of Biology and the university’s Center for Genomics and Bioinformatics. They are included among the 41 co-authors from 11 universities and institutes that are members of the National Human Genome Research Institute’s Model Organism Encyclopedia of DNA Elements project, or modENCODE. Among the IU co-authors are Professor Emeritus of Biology Peter Cherbas, who helped manage the expansive project, and Distinguished Professor of Biology Thom Kaufman, who helped oversee design of the project and the production of biological samples.

“The modENCODE work is intended to provide a new baseline for research using Drosophila,” Cherbas said. “The goal is to provide researchers working on particular processes with much of the detailed background information they would otherwise need to collect for themselves.

"As usual in science, we’ve answered a number of questions and raised even more. For example, we identified 1,468 new genes, of which 536 were found to reside in previously uncharacterized gene-free zones.”

“We think these results could influence gene regulation research in all animals,” Kaufman said. “This exhaustive study also identified a number of phenomena previously reported only in mammals, and that alone is really telling about the versatility of Drosophila melanogaster as a model organism. The new work provides a number of new potential uses for this powerful model system.”

An example they pointed to was the perturbation experiments that identified new genes and transcripts. New genes were identified in experiments where adults were challenged with heat shock, cold shock, exposure to heavy metals, the drug caffeine and the herbicide paraquat, while larvae were treated with heavy metals, caffeine, ethanol or the insecticide rotenone.

Those environmental stresses resulted in small changes in expression level at thousands of genes; and in one treatment, four newly modeled genes were expressed altogether differently. In total, 5,249 transcript models for 811 genes were revealed only under perturbed conditions.

As did the flies in this new research, scientists who studied the Deepwater Horizon incident in the Gulf of Mexico found that marsh fishes responding to chronic hydrocarbon exposure had a number of expressional responses beyond the heat shock pathway, including the down regulation of genes encoding eggshell and yolk proteins as did the flies. To see this response overlap across phyla means the consortium may have identified a conserved metazoan stress response involving enhanced metabolism and the suppression of genes involved in reproduction.

Indiana University co-authors with Cherbas and Kaufman were co-first author Robert Eisman, Justen Andrews, Lucy Cherbas, Brian D. Eads, David Miller, Keithanne Mockaitis, Johnny Roberts and Dayu Zhang. All were associated with the Department of Biology and/or the Center for Genomics and Bioinformatics.

“Diversity and dynamics of the Drosophila transcriptome,” published March 16 in the journal Nature, also included 31 other co-authors whose affiliations were with the University of California, Berkeley; Lawrence Berkeley National Laboratory; University of Connecticut Health Center; Cold Spring Harbor Laboratory; Sloan-Kettering Institute; National Institute of Diabetes and Digestive and Kidney Diseases; RIKEN Yokohama Institute (Japan); Harvard Medical School; and Howard Hughes Medical Institute.

Steve Chaplin | newswise
Further information:
http://www.iu.edu

Further reports about: Bioinformatics Biology Drosophila Indiana RNA RNAs flies genes melanogaster proteins shock thousands transcriptome

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>