Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Complete RNA Collection of Fruit Fly Uncovers Unprecedented Complexity

20.03.2014

IU plays key role in consortium; 1,468 new genes discovered

Scientists from Indiana University are part of a consortium that has described the transcriptome of the fruit fly Drosophila melanogaster in unprecedented detail, identifying thousands of new genes, transcripts and proteins.


IU DROSOPHILA GENOMICS RESEARCH CENTER

Image of a stained Drosophila cell.

In the new work, published Sunday in the journal Nature, scientists studied the transcriptome -- the complete collection of RNAs produced by a genome -- at different stages of development, in diverse tissues, in cells growing in culture, and in flies stressed by environmental contaminants. To do so, they used contemporary sequencing technology to sequence all of the expressed RNAs in greater detail than ever before possible.

The paper shows that the Drosophila genome is far more complex than previously suspected and suggests that the same will be true of the genomes of other higher organisms. The paper also reports a number of novel, particular results: that a small set of genes used in the nervous system are responsible for a disproportionate level of complexity; that long regulatory and so-called “antisense” RNAs are especially prominent during gonadal development; that “splicing factors” (proteins that control the maturation of RNAs by splicing) are themselves spliced in complex ways; and that the Drosophila transcriptome undergoes large and interesting changes in response to environmental stresses.

The importance of Drosophila melanogaster as a model system cannot be overstated. Using it, the mechanisms of heredity were worked out about 100 years ago. Today, as biologists have developed increasing appreciation of how well genes and critical life processes are conserved over long evolutionary distances, flies have emerged as critical tools for understanding human biology and disease. Drosophila research is an area that has long had associations with IU, beginning with Nobel Laureate Herman J. Muller.

IU has 10 co-authors on the paper from the IU Bloomington College of Arts and Sciences’ Department of Biology and the university’s Center for Genomics and Bioinformatics. They are included among the 41 co-authors from 11 universities and institutes that are members of the National Human Genome Research Institute’s Model Organism Encyclopedia of DNA Elements project, or modENCODE. Among the IU co-authors are Professor Emeritus of Biology Peter Cherbas, who helped manage the expansive project, and Distinguished Professor of Biology Thom Kaufman, who helped oversee design of the project and the production of biological samples.

“The modENCODE work is intended to provide a new baseline for research using Drosophila,” Cherbas said. “The goal is to provide researchers working on particular processes with much of the detailed background information they would otherwise need to collect for themselves.

"As usual in science, we’ve answered a number of questions and raised even more. For example, we identified 1,468 new genes, of which 536 were found to reside in previously uncharacterized gene-free zones.”

“We think these results could influence gene regulation research in all animals,” Kaufman said. “This exhaustive study also identified a number of phenomena previously reported only in mammals, and that alone is really telling about the versatility of Drosophila melanogaster as a model organism. The new work provides a number of new potential uses for this powerful model system.”

An example they pointed to was the perturbation experiments that identified new genes and transcripts. New genes were identified in experiments where adults were challenged with heat shock, cold shock, exposure to heavy metals, the drug caffeine and the herbicide paraquat, while larvae were treated with heavy metals, caffeine, ethanol or the insecticide rotenone.

Those environmental stresses resulted in small changes in expression level at thousands of genes; and in one treatment, four newly modeled genes were expressed altogether differently. In total, 5,249 transcript models for 811 genes were revealed only under perturbed conditions.

As did the flies in this new research, scientists who studied the Deepwater Horizon incident in the Gulf of Mexico found that marsh fishes responding to chronic hydrocarbon exposure had a number of expressional responses beyond the heat shock pathway, including the down regulation of genes encoding eggshell and yolk proteins as did the flies. To see this response overlap across phyla means the consortium may have identified a conserved metazoan stress response involving enhanced metabolism and the suppression of genes involved in reproduction.

Indiana University co-authors with Cherbas and Kaufman were co-first author Robert Eisman, Justen Andrews, Lucy Cherbas, Brian D. Eads, David Miller, Keithanne Mockaitis, Johnny Roberts and Dayu Zhang. All were associated with the Department of Biology and/or the Center for Genomics and Bioinformatics.

“Diversity and dynamics of the Drosophila transcriptome,” published March 16 in the journal Nature, also included 31 other co-authors whose affiliations were with the University of California, Berkeley; Lawrence Berkeley National Laboratory; University of Connecticut Health Center; Cold Spring Harbor Laboratory; Sloan-Kettering Institute; National Institute of Diabetes and Digestive and Kidney Diseases; RIKEN Yokohama Institute (Japan); Harvard Medical School; and Howard Hughes Medical Institute.

Steve Chaplin | newswise
Further information:
http://www.iu.edu

Further reports about: Bioinformatics Biology Drosophila Indiana RNA RNAs flies genes melanogaster proteins shock thousands transcriptome

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>