Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study in Mice Discovers Injection of Heat-Generating Cells Reduces Belly Fat

06.09.2012
The injection of a tiny capsule containing heat-generating cells into the abdomens of mice led those animals to burn abdominal fat and initially lose about 20 percent of belly fat after 80 days of treatment.

Researchers conducting the study were surprised to see that the injected cells even acted like “missionaries,” converting existing belly fat cells into so-called thermogenic cells, which use fat to generate heat.

Over time, the mice gained back some weight. But they resisted any dramatic weight gain on a high-fat diet and burned away more than a fifth of the cells that make up their visceral fat, which surrounds the organs and is linked to higher risk for Type 2 diabetes, cancer and heart disease.

The scientists took advantage of the heat-generating properties of a so-called good fat in the body, brown fat, to cut back on the white fat cells that compose the visceral fat that tends to accumulate in the belly.

The scientists combined those brown fat thermogenic cells with genetically modified cells missing an enzyme that leads to visceral fat growth. The engineered cells were placed inside a gel-like capsule that allowed for release of its contents without triggering an immune response.

“With a very small number of cells, the effect of the injection of this capsule was more pronounced at the beginning, when the mice dramatically lost about 10 percent of their weight. They gained some weight back after that. But then we started to look at how much visceral fat was present, and we saw about a 20 percent reduction in those lipids. Importantly, other nontreated peripheral or subcutaneous fat, which has some beneficial health effects, remained the same. That’s what we want,” said Ouliana Ziouzenkova, assistant professor of human nutrition at Ohio State University and lead author of the study.

“We observed the mice for 80 days after injection and the capsule didn’t break or cause any scarring or inflammation. This suggests it’s a clean, safe potential therapy for obesity,” added Ziouzenkova, also an investigator in Ohio State’s Comprehensive Cancer Center and the Center for Clinical and Translational Science. Studies in larger animals would be needed before trials in humans could begin, she said.

If this were someday approved for humans, Ziouzenkova said such a therapy would be best suited to patients who develop visceral fat with aging, aren’t able to exercise and shouldn’t dramatically reduce their calories because that can cause the loss of beneficial subcutaneous fat. She also noted that anti-obesity drugs for humans currently on the market can reduce body weight by about 10 to 15 percent, but also have side effects.

The research is published in a recent issue of the journal Biomaterials.

A year ago, Ziouzenkova’s lab identified an enzyme in mice that relates to fat accumulation after consumption of a high-fat diet, and she recently published a paper indicating that mice lacking that enzyme could stay lean even while eating excess fat. She applied those findings in this work by using the genetically modified cells that are missing that enzyme to potentially help boost the ability of brown fat cells to burn up visceral fat.

For this study, she collaborated with Ohio State chemists to create the capsules. They are composed of alginate-poly-L-lysine, a compound that creates enough of a barrier to encapsulate cells without signaling the immune system that it should react to a foreign object in the body, while also enabling nutrient supply to the encapsulated cells for their long-term survival.

The researchers used three groups of normal mice for the study, feeding them all a high-fat diet for 90 days. After that, five mice received no treatment, five were treated with empty capsules and five received an injection of active capsules containing genetically engineered cells. The capsules were injected into two areas of visceral fat in their abdomens.

The mice continued to eat a high-fat diet for another 80 days. The mice receiving no treatment continued to gain weight in those 80 days, while the mice receiving thermogenic cells lost weight for 23 days and then began to gain it back, eventually maintaining a steady weight even after continuing to eat excessive saturated fat. Mice receiving empty capsules also lost some weight, but the researchers determined in a separate pilot study that the sham injections did not reduce visceral fat.

The researchers examined visceral fat pads from the mice and determined that overall, lipid content was at least 20 percent lower in mice treated with active capsules compared to the placebo injection group of mice.

A closer look at exactly what was going on in the animals’ cells showed that the injected cells produced high levels of a protein called Ucp1, which burns fat, suggesting that this protein assisted in the visceral fat reduction.

By tagging the injected cells with a fluorescent protein, the scientists could use imaging technology to track the cells in the body; this not only benefited the research, but also provides a way to safely remove these capsules if needed, Ziouzenkova noted.

“The injected cells were perfectly inversely correlated with lipids – so the more injected cells we have capable of burning fat, the more fat gets burned,” she said. “These injected cells worked almost like missionaries, starting to convert host cells and turning them into thermogenic cells.”

Because that creation of heat could be uncomfortable inside a human body, the researchers analyzed the treated mice further to see if the thermogenesis in the belly would produce effects similar to hot flashes.

“Heat production was higher in injected animals, but it was not dramatically higher. So there is some kind of response, but it seems not to be at a magnitude impairing a patient’s well-being,” Ziouzenkova said. “The animals were also moving less than noninjected animals, but in spite of that, they were still able to lose visceral fat. Their glucose tolerance improved, as well, which is probably related to reduced visceral fat.”

Ziouzenkova said she hopes to design additional capsules to target a variety of diseases beyond obesity.

This work was supported by the American Heart Association Great Rivers Affiliate, the National Institutes of Health, a pilot industry partnership grant at the Center for Clinical and Translational Science (funded by the National Center for Advancing Translational Sciences), the Ohio State College of Education and Human Ecology (EHE), a Food Innovation Center Seed grant and an EHE dissertation fellowship.

Ziouzenkova collaborated with several Ohio State scientists on this research, including L. James Lee, director of the NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices (NSEC); and Sanjay Rajagopalan, Chandan Sen and Sashwati Roy of the Davis Heart and Lung Research Institute (DHLRI). Additional co-authors include Fangping Yang and David DiSilvestro of the Department of Human Nutrition; Xulang Zhang of the NSEC; Andrei Maiseyeu of the DHLRI; Georgeta Mihai, Santosh Maurya and Muthu Periasamy of the Department of Physiology & Cell Biology; and Rumana Yasmeen and Valerie Bergdall of University Laboratory Animal Resources, all at Ohio State; and Gregg Duester of the Sanford-Burnham Medical Research Institute in La Jolla, Calif.

Contact: Ouliana Ziouzenkova, (614) 292-5034; Ziouzenkova.1@osu.edu
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Ouliana Ziouzenkova | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>