Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study maps hotspots of genetic rearrangement

06.04.2011
Findings in mice could aid understanding of how mammals genetically adapt

Researchers have zoomed in on mouse chromosomes to map hotspots of genetic recombination — sites where DNA breaks and reforms to shuffle genes.

The findings of the scientists at the National Institutes of Health and Uniformed Services University of Health Sciences (USU) have the potential to improve the detection of genes linked to disease and to help understand the root causes of genetic abnormalities. The research, published online April 3 in Nature, moves scientists one step closer to understanding how mammals evolve and respond to their environments.

In this image, hundredfold magnification of a single sperm precursor cell shows the chromosomes – in green – and the places where these chromosomes are most likely to break apart and re-form, called genetic recombination hotspots – in red. Genetic rearrangements at these hotspots have the potential to shuffle maternal and paternal chromosomes, the end results of which ensure that the genetic information in every sperm cell is unique. Source: Fatima Smagulova, Ph.D., USU, and Kevin Brick, Ph.D., NIDDK, NIH.Genetic recombination occurs at hotspots in cells that form sperm and eggs. At these sites, rearrangements ensure that the combination of genes passed on to every sperm and egg cell is unique. By studying precursors of mouse sperm cells during the early stages of genetic recombination, the scientists have created a precise, first-of-its-kind map of recombination hotspots in a multi-celled organism.

With this map, researchers also hope to pinpoint where, how and why abnormalities in the number of chromosomes can occur. Such abnormalities — for instance, the extra copy of chromosome 21 that gives rise to Down syndrome — are the leading known cause of miscarriages, congenital birth defects, and mental retardation in the United States.

“We wanted to figure out how recombination varied across the genome,” said R. Daniel Camerini-Otero, M.D., Ph.D., one of the senior authors on the paper and a researcher at the NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). “Hotspots are the starting point for the process that ensures that every person is unique. These hotspots facilitate the adaptation of populations to environmental influences through evolution. Our findings will allow us to explore things like how environment and genetic background affect the recombination landscape.”

“Now that we have mapped recombination hotspots genome-wide, we can actually carry out studies on the whole mouse genome. This will be very beneficial in extending our knowledge to organisms as complex as humans,” said Galina Petukhova, Ph.D., assistant professor in the USU Department of Biology and one of the paper’s senior authors. “Faulty recombination can lead to infertility or birth defects, and this work brings us closer to our ultimate goal of helping to prevent these health issues.”

Camerini-Otero compared the map’s new level of precision to the difference between being able to zoom in to see a city block to being able to zoom in to see each building on the block. “What we were looking for was resolution that was much higher than ever seen before,” said Camerini-Otero. “Now that we can actually see these individual events of genetic recombination, we can begin to understand their molecular structure.”

The researchers — including lead authors Fatima Smagulova, Ph.D., of USU, and Ivan V. Gregoretti, Ph.D., of NIDDK — used cutting-edge DNA sequencing technology and lots of computational power to take a snapshot of all the individual pieces of DNA that were taking part in recombination at a given moment in living cells. They then used this snapshot of short DNA pieces to draw a map of where chromosomes have an increased potential to be broken and to come back together in new ways.

Mice were used as subjects for this study because the researchers needed a population that could be created with a specific and identical genetic background. With this initial study a success, they hope to apply the same techniques to study recombination in people in the near future.

The end result is a catalog of about 10,000 hotspots and resembles a detailed map of where diversity can arise in the genome and of sites where such processes may go awry. The researchers next plan to apply what they’ve seen and learned with this new map to further understand chromosomal abnormalities, genetic recombination, genome stability and evolution.

The NIH’s National Institute of General Medical Sciences and the March of Dimes Foundation helped fund this research through grants to Petukhova.

The NIDDK conducts and supports research in diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic, and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe, and disabling conditions affecting Americans. For more information about NIDDK and its programs, see www.niddk.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference: “Genome-Wide Analysis Reveals Novel Molecular Features of Mouse Recombination Hotspots,” published online Sunday, April 3, 2011, in Nature (http://www.nature.com/nature/journal/vaop/ncurrent/full/nature09869.html).

Amy F. Reiter |
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>