Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies human melanoma stem cells

24.08.2012
Cancer stem cells are defined by three abilities: differentiation, self-renewal and their ability to seed a tumor.
These stem cells resist chemotherapy and many researchers posit their role in relapse. A University of Colorado Cancer Center study recently published in the journal Stem Cells, shows that melanoma cells with these abilities are marked by the enzyme ALDH, and imagines new therapies to target high-ALDH cells, potentially weeding the body of these most dangerous cancer creators.

“We’ve seen ALDH as a stem cell marker in other cancer types, but not in melanoma, and until now its function has been largely unknown,” says the paper’s senior author, Mayumi Fujita, MD, PhD, investigator at the CU Cancer Center and associate professor in the Department of Dermatology at the CU School of Medicine.

Fujita’s group transplanted ALDH+ and ALDH- melanoma cells into animal models, showing the ALDH+ cells were much more powerfully tumorigenic. In the same ALDH+ cells, the group then silenced the gene that creates this protein, finding that with ALDH knocked down, melanoma cells died in cultures and lost their ability to form tumors in animal models. In cell cultures, silencing this ALDH gene also sensitized melanoma cells to existing chemotherapies. When the group explored human tumor samples, they found distinct subpopulations of these ALDH+ cells, which made up about 0.1-0.2 percent of patients’ primary tumors. In samples of metastatic melanoma – the most aggressive form of the disease – the percentage of ALDH+ cells was greater, even over 10 percent in some tumors, further implying the powerful danger of these cells.

“In these same ALDH+ cells, we find the markers of stem cells are upregulated and those of cell differentiation are downregulated. In addition to these clues, ALDH+ cells generate the heterogeneous cell types seen in the original tumor,” says Fujita, meaning that in addition to self-renewal and tumorigenesis, ALDH+ cells fulfill the third criteria for a cancer stem cell: the ability to differentiate.

The study also shows how the ALDH gene and its protein act to create a cell’s stem-like properties.

“One way ALDH makes a cancer stem cell is through the retinoic acid signaling pathway,” Fujita says. The protein ALDH leads to the overproduction of retinoic acid, which in turn binds to a cell’s nuclear receptors and influences the expression of many of the cell’s genes – for example, genes involved in regulating cell survival, repair, and proliferation, all of which combine to confer chemoresistance. Target cells with high ALDH and you target all the downstream effects, including the retinoic acid signaling pathway.
“Our hope is that we can intervene in this signaling, either at the level of ALDH or elsewhere in the pathway, especially to re-sensitize cells to chemotherapy. Using a new drug to take away a melanoma stem cell’s chemoresistance could boost the effectiveness of existing drugs,” Fujita says.

This research was supported in part by NIH grant CA125833, Veterans Affairs Merit Review Award, Wendy Will Case Cancer Fund, Tadamitsu Cancer Research Fund, and the University of Colorado Cancer Center.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>