Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies human genes required for hepatitis C viral replication

20.03.2009
Targeting factors in patients, rather than the virus, could avoid development of resistance

Massachusetts General Hospital (MGH) researchers are investigating a new way to block reproduction of the hepatitis C virus (HCV) – targeting not the virus itself but the human genes the virus exploits in its life cycle. In the March 19 Cell Host & Microbe, they report finding nearly 100 genes that support the replication of HCV and show that blocking several of them can suppress viral replication in cultured cells.

"We identified a large number of genes that have not been previously known to be involved in hepatitis C replication," says Raymond Chung, MD, director of Hepatology in the MGH Gastrointestinal Unit, the study's senior author.

Lead author Andrew Tai, MD, PhD, also of the MGH Gastrointestinal Unit, adds, "We may be a few years away from developing therapies based on these findings, but this study is a proof of principle that targeting host factors is a viable therapeutic strategy."

Usually spread by blood-to-blood contact, HCV infection becomes chronic in 70 to 80 percent of patients, and long-term infection can lead to liver failure or liver cancer. Today HCV-related liver disease is the most common diagnosis underlying the need for liver transplantation. HCV infection is usually treated with a six- to eleven-month regimen combining peginterferon and the antiviral drug ribavirin, but treatment is not successful in many patients and has serious side effects some cannot tolerate. Other therapies targeting viral enzymes are being developed, but there is concern that HCV's ability to mutate rapidly would lead to the emergence of resistant strains, so strategies directed against factors in the infected host rather than the virus may offer a complementary approach.

These strategies are being explored in a number of diseases – including influenza, West Nile virus and HIV – and previous studies have scanned a limited number of human genes for host cofactors of HCV infection. For the current study the researchers examined whether blocking each of the approximately 21,000 predicted messenger RNA transcripts in the human genome with small interfering RNAs (siRNAs) had any effect on HCV replication. Chung notes that this approach does not rely on any prior assumptions about gene function and can thereby identify genes not previously suspected of involvement.

The siRNA scan found 96 genes that appear to have a role in viral replication, and the research team studied several of them in greater detail. One gene codes for an enzyme called PI4KA, which is believed to be involved in the formation of membrane structures within the cell that may be the site of HCV replication. Another group of genes contribute to formation of the COPI coat that covers several types of cellular vesicles and is known to have a role in the replication of poliovirus. The researchers also focused on the gene for hepcidin, a liver protein that regulates iron absorption, since iron levels in the blood and liver rise in chronic HCV infection. They found that blocking each of these genes also blocked HCV replication, as did drugs that inhibit PI4KA and COPI, although the tested agents might not be suitable for therapeutic use.

"Now we need to work to uncover the molecular mechanisms by which these genes support HCV replication to get a better idea of which would be advantageous therapeutic targets," explains Chung, an associate professor of Medicine at Harvard Medical School.

Additional co-authors of the Cell Host & Microbe paper are Yair Benita, PhD, Sun-Suk Kim, MD, and Ramnik Xavier, MB,ChB, MGH Gastrointestinal Unit; and Naoya Sakamoto, MD, PhD,Tokyo Medical and Dental University. The study was supported by grants from the National Institutes of Health, the Massachusetts Biomedical Research Corporation, the American Gastrointestinal Association and the American Liver Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>