Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies human genes required for hepatitis C viral replication

20.03.2009
Targeting factors in patients, rather than the virus, could avoid development of resistance

Massachusetts General Hospital (MGH) researchers are investigating a new way to block reproduction of the hepatitis C virus (HCV) – targeting not the virus itself but the human genes the virus exploits in its life cycle. In the March 19 Cell Host & Microbe, they report finding nearly 100 genes that support the replication of HCV and show that blocking several of them can suppress viral replication in cultured cells.

"We identified a large number of genes that have not been previously known to be involved in hepatitis C replication," says Raymond Chung, MD, director of Hepatology in the MGH Gastrointestinal Unit, the study's senior author.

Lead author Andrew Tai, MD, PhD, also of the MGH Gastrointestinal Unit, adds, "We may be a few years away from developing therapies based on these findings, but this study is a proof of principle that targeting host factors is a viable therapeutic strategy."

Usually spread by blood-to-blood contact, HCV infection becomes chronic in 70 to 80 percent of patients, and long-term infection can lead to liver failure or liver cancer. Today HCV-related liver disease is the most common diagnosis underlying the need for liver transplantation. HCV infection is usually treated with a six- to eleven-month regimen combining peginterferon and the antiviral drug ribavirin, but treatment is not successful in many patients and has serious side effects some cannot tolerate. Other therapies targeting viral enzymes are being developed, but there is concern that HCV's ability to mutate rapidly would lead to the emergence of resistant strains, so strategies directed against factors in the infected host rather than the virus may offer a complementary approach.

These strategies are being explored in a number of diseases – including influenza, West Nile virus and HIV – and previous studies have scanned a limited number of human genes for host cofactors of HCV infection. For the current study the researchers examined whether blocking each of the approximately 21,000 predicted messenger RNA transcripts in the human genome with small interfering RNAs (siRNAs) had any effect on HCV replication. Chung notes that this approach does not rely on any prior assumptions about gene function and can thereby identify genes not previously suspected of involvement.

The siRNA scan found 96 genes that appear to have a role in viral replication, and the research team studied several of them in greater detail. One gene codes for an enzyme called PI4KA, which is believed to be involved in the formation of membrane structures within the cell that may be the site of HCV replication. Another group of genes contribute to formation of the COPI coat that covers several types of cellular vesicles and is known to have a role in the replication of poliovirus. The researchers also focused on the gene for hepcidin, a liver protein that regulates iron absorption, since iron levels in the blood and liver rise in chronic HCV infection. They found that blocking each of these genes also blocked HCV replication, as did drugs that inhibit PI4KA and COPI, although the tested agents might not be suitable for therapeutic use.

"Now we need to work to uncover the molecular mechanisms by which these genes support HCV replication to get a better idea of which would be advantageous therapeutic targets," explains Chung, an associate professor of Medicine at Harvard Medical School.

Additional co-authors of the Cell Host & Microbe paper are Yair Benita, PhD, Sun-Suk Kim, MD, and Ramnik Xavier, MB,ChB, MGH Gastrointestinal Unit; and Naoya Sakamoto, MD, PhD,Tokyo Medical and Dental University. The study was supported by grants from the National Institutes of Health, the Massachusetts Biomedical Research Corporation, the American Gastrointestinal Association and the American Liver Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>