Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies human genes required for hepatitis C viral replication

20.03.2009
Targeting factors in patients, rather than the virus, could avoid development of resistance

Massachusetts General Hospital (MGH) researchers are investigating a new way to block reproduction of the hepatitis C virus (HCV) – targeting not the virus itself but the human genes the virus exploits in its life cycle. In the March 19 Cell Host & Microbe, they report finding nearly 100 genes that support the replication of HCV and show that blocking several of them can suppress viral replication in cultured cells.

"We identified a large number of genes that have not been previously known to be involved in hepatitis C replication," says Raymond Chung, MD, director of Hepatology in the MGH Gastrointestinal Unit, the study's senior author.

Lead author Andrew Tai, MD, PhD, also of the MGH Gastrointestinal Unit, adds, "We may be a few years away from developing therapies based on these findings, but this study is a proof of principle that targeting host factors is a viable therapeutic strategy."

Usually spread by blood-to-blood contact, HCV infection becomes chronic in 70 to 80 percent of patients, and long-term infection can lead to liver failure or liver cancer. Today HCV-related liver disease is the most common diagnosis underlying the need for liver transplantation. HCV infection is usually treated with a six- to eleven-month regimen combining peginterferon and the antiviral drug ribavirin, but treatment is not successful in many patients and has serious side effects some cannot tolerate. Other therapies targeting viral enzymes are being developed, but there is concern that HCV's ability to mutate rapidly would lead to the emergence of resistant strains, so strategies directed against factors in the infected host rather than the virus may offer a complementary approach.

These strategies are being explored in a number of diseases – including influenza, West Nile virus and HIV – and previous studies have scanned a limited number of human genes for host cofactors of HCV infection. For the current study the researchers examined whether blocking each of the approximately 21,000 predicted messenger RNA transcripts in the human genome with small interfering RNAs (siRNAs) had any effect on HCV replication. Chung notes that this approach does not rely on any prior assumptions about gene function and can thereby identify genes not previously suspected of involvement.

The siRNA scan found 96 genes that appear to have a role in viral replication, and the research team studied several of them in greater detail. One gene codes for an enzyme called PI4KA, which is believed to be involved in the formation of membrane structures within the cell that may be the site of HCV replication. Another group of genes contribute to formation of the COPI coat that covers several types of cellular vesicles and is known to have a role in the replication of poliovirus. The researchers also focused on the gene for hepcidin, a liver protein that regulates iron absorption, since iron levels in the blood and liver rise in chronic HCV infection. They found that blocking each of these genes also blocked HCV replication, as did drugs that inhibit PI4KA and COPI, although the tested agents might not be suitable for therapeutic use.

"Now we need to work to uncover the molecular mechanisms by which these genes support HCV replication to get a better idea of which would be advantageous therapeutic targets," explains Chung, an associate professor of Medicine at Harvard Medical School.

Additional co-authors of the Cell Host & Microbe paper are Yair Benita, PhD, Sun-Suk Kim, MD, and Ramnik Xavier, MB,ChB, MGH Gastrointestinal Unit; and Naoya Sakamoto, MD, PhD,Tokyo Medical and Dental University. The study was supported by grants from the National Institutes of Health, the Massachusetts Biomedical Research Corporation, the American Gastrointestinal Association and the American Liver Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>