Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study identifies 4 genetic variants linked to esophageal cancer and Barrett's esophagus

Findings from the first large-scale, genome-wide association study of esophageal adenocarcinoma may lead to new screening tools for those at high risk

An international consortium co-led by researchers at Fred Hutchinson Cancer Research Center and the QIMR Berghofer Medical Research Institute in Australia has identified four genetic variants associated with an increased risk of esophageal cancer and its precursor, a condition called Barrett's esophagus.

The findings, by corresponding author Thomas L. Vaughan, M.D., M.P.H., a member of the Epidemiology Program in the Public Health Sciences Division at Fred Hutch, are published online ahead of the December print issue of Nature Genetics. Vaughan co-led the project with co-author David Whiteman, Ph.D., head of the Cancer Control Group at QIMR (formerly known as the Queensland Institute for Medical Research).

Both are members of the international Barrett's and Esophageal Adenocarcinoma Consortium, or BEACON, an open scientific forum for research into the causes and prevention of esophageal cancer and Barrett's esophagus that involves more than 40 scientists in North America, Europe and Australia.

"Epidemiologic findings, largely based on the work of BEACON investigators, clearly demonstrate that environmental factors such as obesity, gastroesophageal reflux , smoking and diet are largely responsible for the rapidly increasing incidence and mortality from esophageal adenocarconima," said Vaughan, who serves as BEACON's chair and is also a professor of epidemiology at the University of Washington School of Public Health. "However, a growing body of evidence also suggests an important role for inherited susceptibility."

To better understand the role of genetics in Barrett's and esophageal cancer, Vaughan and his BEACON colleagues pooled data and DNA specimens from 15 international studies conducted in the past 20 years to estimate the heritability of these conditions and identify genetic variants associated with increased risk. Altogether they gathered DNA samples and lifestyle risk-exposure data from more than 8,000 study participants, including about 5,500 with esophageal cancer or Barrett's esophagus and about 3,200 participants without these conditions who served as a comparison group.

The DNA samples were genotyped at Fred Hutch using a high-density array that allowed for the simultaneous and accurate assessment of more than 1 million genetic variants. To increase the statistical power of the study and its ability to identify potential causal genetic mutations, information on control subjects gleaned from public data repositories was added to the mix. The data analysis was conducted at the University of Washington in collaboration with the QIMR research group in Queensland.

After combing through all of the data, the researchers identified genetic variants at three locations – on chromosomes 3, 9 and 19 – as being significantly associated with esophageal adenocarcinoma and Barrett's esophagus. In addition, they found that a genetic variant on chromosome 16 that had been previously linked to Barrett's esophagus was also associated with an increased risk of esophageal adenocarcinoma.

Vaughan and colleagues also found that the role of inherited susceptibility to this cancer appears to be much stronger in the early stages of disease – that is, the development of Barrett's esophagus – rather than the progression of Barrett's to cancer.

"These findings establish strong starting points for further epidemiologic studies to pin down the causal variants, and laboratory studies to identify the mechanisms by which the causal variants might affect the development of Barrett's esophagus and esophageal adenocarcinoma," Vaughan said. "The fact that all four of the new loci are in or near genes associated with early development of the esophagus or already associated with oncogenic activity is particularly exciting, as it implies that we may be close to finding some important pathways in the development of this highly fatal disease."

Ultimately, the researchers believe these findings will contribute to the development of new screening tools to identify those at highest risk of esophageal adenocarcinoma and its precursor, particularly when combined with established risk factors such as obesity and gastric reflux. "Down the line we anticipate that a better understanding of the pathophysiology of these diseases will lead to better and earlier treatments," Vaughan said.

Barrett's is associated with chronic heartburn and affects an estimated 1 million to 2 million Americans. While the risk of developing esophageal cancer in a person with Barrett's is only about 0.5 percent per year, the outlook is grim if the disease is not diagnosed early. The majority of patients with invasive esophageal cancer die within a year of diagnosis.

This year, esophageal cancer will strike nearly 18,000 Americans and kill more than 15,000. Esophageal adenocarcinoma, which accounts for more than 60 percent of esophageal-cancer cases, is seven times more common in men than women.

The National Cancer Institute provided primary funding for this research, the first large-scale genome-wide association study of esophageal adenocarcinoma.

At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information visit or follow Fred Hutch on Facebook, Twitter or YouTube.

Kristen Woodward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>