Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds surprising new branches on arthropod family tree

11.02.2010
Any way you look at it -- by sheer weight, species diversity or population -- the hard-shelled, joint-legged creepy crawlies called arthropods dominate planet Earth. Because of their success and importance, scientists have been trying for decades to figure out the family relationships that link lobsters to millipedes and cockroaches to tarantulas and find which might have come first.

In a scientific and technological tour de force that was nearly a decade in the making, a team of scientists from Duke University, the University of Maryland and the Natural History Museum of Los Angeles County have compared genetic sequences from 75 different species to draw a new family tree that includes every major arthropod lineage. Some of the relationships are so surprising that new names had to be coined for five newly-discovered groupings.

The work, which was supported by the National Science Foundation, appears early online Wednesday in the journal Nature.

A big surprise to tumble out of the new tree is that the closest living relatives of insects include a small and obscure group of creatures called remipedes that were only discovered in the late 1970s living in a watery cave in the Bahamas. With linear bodies like centipedes, simple legs and no eyes, it was thought that this small group -- now placed with cephalocarids in the newly-named Xenocarida or "strange shrimp" -- would be found at the base of the crustacean family tree.

Now, after analyzing 62 shared genetic sequences across all the arthropods, the researchers are putting the strange shrimp together with the six-legged insects, Hexapoda, to form a new group they dubbed Miracrustacea, or "surprising crustaceans." As a "sister clade" to hexapods, the Xenocarida likely represent the sort of creature that came onto land to start the spectacular flowering of the insect lineage, said Cliff Cunningham, a professor of biology at Duke who led the study.

Triops, a 2-inch crustacean that looks like a cross between a horseshoe crab and a mayfly, had also been thought of as an early crustacean, but it too was shown to have a relatively modern origin in the new analysis, Cunningham said.

"Taxonomists have been arguing about these things for decades, and people kept coming at this with one data set after another," Cunningham said. This latest study has created a fuller picture of the arthropod family tree by using more species and more genes, he said.

Beginning in 2001, Jeffrey Shultz, an associate professor of entomology at Maryland, led the efforts to figure out which species needed to be sequenced for a robust comparison, and then to round up suitable specimens of each. The study included nematodes, scorpions, dragonflies, barnacles, copepods and centipedes.

Remipedes, one of the two species of Xenocarida in the study, had to be fetched from partially submerged limestone caves in the Yucatan Peninsula and preserved just so. Bitty creatures called mystacocarids that live between grains of sand were captured by the Natural History Museum's Regina Wetzer, using a microscope on a Massachusetts beach.

Once assembled, the 75 species were then stripped down to their DNA for a painstaking search to find genetic sequences that would appear across all arthropods, enabling statistical comparisons.

The lab of Jerome Regier at Maryland's Center for Biosystems Research combed through 2,500 different combinations of PCR primers to find 62 protein-coding gene sequences that could be compared across all 75 species. Regier was an early proponent of using protein coding genes to sort out the arthropod tree, while most other researchers were using relatively less complex analyses from the DNA found in ribosomes and mitochondria.

The researchers ran four different statistical approaches, including two new ones invented at Maryland, "and they all came up with the same answer," Cunningham said. Earlier studies had not used as many genes or as many species, making this study about four times larger than anything done previously.

The spiders, ticks and scorpions of the subgroup Chelicerata are shown to have split from the line leading to insects and crustaceans even before the millipedes and centipedes of the subphylum Myriapoda. Most recent molecular studies had grouped these arachnids in Chelicerata together with millipedes and centipedes of the Myriapoda. But the new analysis puts millipedes and centipedes together with crustaceans and insects in a group taxonomists had long ago named Mandibulata.

"The only thing people thought they knew before molecular data was available was that the Myriapods were with the insects," Shultz said. But that turned out to be wrong. Even the grouping Crustacea is no longer correct, since it includes the six-legged insects.

Within the insect group Hexapoda, the good news for taxonomists who have grouped insects according to body shape and features is that they were pretty much on the mark, Shultz added.

There are still many holes that need to be filled in, Cunningham said, but at least the shape of the tree seems right. "Now the developmental biologists can really piece things together."

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>