Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Finds Surprises in Evolution of Frog Life Cycles

All tadpoles grow into frogs, but not all frogs start out as tadpoles, reveals a new study on 720 species of frogs to be published in the journal Evolution.

The study, “Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs,” led by John J. Wiens, an Associate Professor in the Department of Ecology and Evolution at Stony Brook University, and colleagues Ivan Gomez-Mestra from the Doñana Biological Station in Seville, Spain, and R. Alexander Pyron from George Washington University, uncovers the surprising evolution of life cycles in frogs.

Roughly half of all frog species have a life cycle that starts with eggs laid in water, which hatch into aquatic tadpoles, and then go through metamorphosis and become adult frogs. The other half, according to the authors, “includes an incredible diversity of life cycles, including species in which eggs are placed on leaves, in nests made of foam, and even in the throat, stomach, or back of the female frog. There are also hundreds of species with no tadpole stage at all, a reproductive mode called direct development.”

For decades, it has been assumed that the typical mode (with eggs and tadpoles placed in water) gave rise to direct development through a series of gradual intermediate steps involving eggs laid in various places outside water. “However, the results show that in many cases, species with eggs and tadpoles placed in water seem to give rise directly to species with direct development, without going through the many seemingly intermediate steps that were previously thought to be necessary,” Dr. Wiens said.

“The results also suggests that there many potential benefits for species that have retained aquatic eggs and tadpoles, such as allowing females to have more offspring and to colonize regions with cooler and drier climates. These advantages may explain why the typical frog life cycle has been maintained for more than 220 million years among thousands of species,” said Professor Wiens.

Professor Wiens | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>