Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Surprises in Evolution of Frog Life Cycles

12.09.2012
All tadpoles grow into frogs, but not all frogs start out as tadpoles, reveals a new study on 720 species of frogs to be published in the journal Evolution.

The study, “Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs,” led by John J. Wiens, an Associate Professor in the Department of Ecology and Evolution at Stony Brook University, and colleagues Ivan Gomez-Mestra from the Doñana Biological Station in Seville, Spain, and R. Alexander Pyron from George Washington University, uncovers the surprising evolution of life cycles in frogs.

Roughly half of all frog species have a life cycle that starts with eggs laid in water, which hatch into aquatic tadpoles, and then go through metamorphosis and become adult frogs. The other half, according to the authors, “includes an incredible diversity of life cycles, including species in which eggs are placed on leaves, in nests made of foam, and even in the throat, stomach, or back of the female frog. There are also hundreds of species with no tadpole stage at all, a reproductive mode called direct development.”

For decades, it has been assumed that the typical mode (with eggs and tadpoles placed in water) gave rise to direct development through a series of gradual intermediate steps involving eggs laid in various places outside water. “However, the results show that in many cases, species with eggs and tadpoles placed in water seem to give rise directly to species with direct development, without going through the many seemingly intermediate steps that were previously thought to be necessary,” Dr. Wiens said.

“The results also suggests that there many potential benefits for species that have retained aquatic eggs and tadpoles, such as allowing females to have more offspring and to colonize regions with cooler and drier climates. These advantages may explain why the typical frog life cycle has been maintained for more than 220 million years among thousands of species,” said Professor Wiens.

Professor Wiens | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>