Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new relationship between gene duplication and alternative splicing in plants

08.12.2009
University of Georgia scientists looking to understand the genetic mechanisms of plant defense and growth have found for the first time in plants an inverse relationship between gene duplication and alternative splicing. The finding has implications for diversity not only in plants, but in animals and humans.

The research will be published online in this week's Proceedings of the National Academy of Sciences.

"This inverse relationship has been previously reported in animals," said University of Georgia professor and senior author Chung-Jui Tsai. "And in animal genes, when there's a single copy, more often than not you see a higher degree of alternative splicing."

Alternative splicing is the molecular process that allows a single gene to produce many gene products or proteins with potentially different functions. It is an important regulatory mechanism for determining diversity in all plants and animals.

Tsai is W.N. Haynes Professor and Georgia Research Alliance Eminent Scholar, Warnell School of Forestry and Natural Resources, and professor of genetics, Franklin College of Arts and Sciences, at UGA.

Tsai's team set out to investigate the role of a gene that encodes for the enzyme isochorismate synthase (ICS), which has two distinct functions: synthesis of vitamin K for photosynthesis, the conversion of light to energy, and synthesis of salicylic acid, an aspirin-like compound found naturally in most plants that is important for their resistance to diseases. In Arabidopsis, a tiny flowering annual plant that is widely used as a model organism for studying plants, salicylic acid is derived primarily from ICS. The investigators wanted to know the role of the ICS gene in fast-growing and economically important Populus tree species.

The PNAS authors took their cues from Arabidopsis. In this tiny weed, there are two copies of the ICS gene, while there is only one copy of the gene in Populus.

When subjected to stresses, the tiny Arabidopsis plant did what was expected: It produced normal stress-fighting proteins, but from only one of the ICS duplicates. However, the single copy ICS gene in Populus spontaneously produced a mixture of the normal and alternative forms of gene product in equal proportions, and it did not respond to stresses.

Tsai said, "We asked, 'Does the ICS gene behave differently by chance? Or does it reflect something about how disease resistance is controlled in different kinds of plants?'"

Following the discovery of extensive alternative splicing in the Populus ICS gene, the researchers inserted the Populus ICS gene into an Arabidopsis mutant that lacked the stress-fighting ICS copy. The UGA-led research team found that the Populus ICS gene could not be correctly spliced at all in the foreign Arabidopsis host and could not restore the weed's ability to produce salicylic acid.

Tsai explained, "When the correctly spliced Populus ICS gene was inserted, it worked as expected in Arabidopsis. This suggested that some of the signal recognition for splicing is not in the weed any more."

Tsai's research found that in Arabidopsis one of the ICS genes has been recruited for defense. "When these species get attacked, it's important for them to respond quickly and massively using a dedicated ICS gene."

In contrast, Tsai said, woody perennial trees like Populus, which face environmental stress throughout their long lifetimes, have evolved other pathways to synthesize salicylic acid and other chemicals for "constitutive" defense – meaning these compounds are produced all the time – and the primary ICS gene function is photosynthesis.

Tsai concluded, "The gene duplication and alternative splicing of Arabidopsis and Populus reflect their distinct defense strategies."

But the major finding of the research – the relationship between gene copy number, gene sequence and how splicing may have contributed to gene evolution – is what Tsai finds most exciting.

"Sometimes people compare the gene count between the weeds and trees to try to understand what makes a tree a tree. But it's not the gene number that's significant. The tiny weed has approximately 27,000 genes, and Populus has 35,000 to 40,000 genes – it's not that different." Tsai's research shows that it is also how a gene is regulated that contributes to the difference.

Tsai's co-authors on the paper are Yinan Yuan, Michigan Technological University (MTU); Jeng-Der Chung, Taiwan Forestry Research Institute and a former visiting scientist at UGA; Xueyan Fu and Sarah L. Booth, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Priya Ranjan, formerly at MTU and now at Oak Ridge National Laboratory; and UGA scientists Virgil (Ed) Johnson and Scott Harding, also formerly at MTU.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>