Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new relationship between gene duplication and alternative splicing in plants

08.12.2009
University of Georgia scientists looking to understand the genetic mechanisms of plant defense and growth have found for the first time in plants an inverse relationship between gene duplication and alternative splicing. The finding has implications for diversity not only in plants, but in animals and humans.

The research will be published online in this week's Proceedings of the National Academy of Sciences.

"This inverse relationship has been previously reported in animals," said University of Georgia professor and senior author Chung-Jui Tsai. "And in animal genes, when there's a single copy, more often than not you see a higher degree of alternative splicing."

Alternative splicing is the molecular process that allows a single gene to produce many gene products or proteins with potentially different functions. It is an important regulatory mechanism for determining diversity in all plants and animals.

Tsai is W.N. Haynes Professor and Georgia Research Alliance Eminent Scholar, Warnell School of Forestry and Natural Resources, and professor of genetics, Franklin College of Arts and Sciences, at UGA.

Tsai's team set out to investigate the role of a gene that encodes for the enzyme isochorismate synthase (ICS), which has two distinct functions: synthesis of vitamin K for photosynthesis, the conversion of light to energy, and synthesis of salicylic acid, an aspirin-like compound found naturally in most plants that is important for their resistance to diseases. In Arabidopsis, a tiny flowering annual plant that is widely used as a model organism for studying plants, salicylic acid is derived primarily from ICS. The investigators wanted to know the role of the ICS gene in fast-growing and economically important Populus tree species.

The PNAS authors took their cues from Arabidopsis. In this tiny weed, there are two copies of the ICS gene, while there is only one copy of the gene in Populus.

When subjected to stresses, the tiny Arabidopsis plant did what was expected: It produced normal stress-fighting proteins, but from only one of the ICS duplicates. However, the single copy ICS gene in Populus spontaneously produced a mixture of the normal and alternative forms of gene product in equal proportions, and it did not respond to stresses.

Tsai said, "We asked, 'Does the ICS gene behave differently by chance? Or does it reflect something about how disease resistance is controlled in different kinds of plants?'"

Following the discovery of extensive alternative splicing in the Populus ICS gene, the researchers inserted the Populus ICS gene into an Arabidopsis mutant that lacked the stress-fighting ICS copy. The UGA-led research team found that the Populus ICS gene could not be correctly spliced at all in the foreign Arabidopsis host and could not restore the weed's ability to produce salicylic acid.

Tsai explained, "When the correctly spliced Populus ICS gene was inserted, it worked as expected in Arabidopsis. This suggested that some of the signal recognition for splicing is not in the weed any more."

Tsai's research found that in Arabidopsis one of the ICS genes has been recruited for defense. "When these species get attacked, it's important for them to respond quickly and massively using a dedicated ICS gene."

In contrast, Tsai said, woody perennial trees like Populus, which face environmental stress throughout their long lifetimes, have evolved other pathways to synthesize salicylic acid and other chemicals for "constitutive" defense – meaning these compounds are produced all the time – and the primary ICS gene function is photosynthesis.

Tsai concluded, "The gene duplication and alternative splicing of Arabidopsis and Populus reflect their distinct defense strategies."

But the major finding of the research – the relationship between gene copy number, gene sequence and how splicing may have contributed to gene evolution – is what Tsai finds most exciting.

"Sometimes people compare the gene count between the weeds and trees to try to understand what makes a tree a tree. But it's not the gene number that's significant. The tiny weed has approximately 27,000 genes, and Populus has 35,000 to 40,000 genes – it's not that different." Tsai's research shows that it is also how a gene is regulated that contributes to the difference.

Tsai's co-authors on the paper are Yinan Yuan, Michigan Technological University (MTU); Jeng-Der Chung, Taiwan Forestry Research Institute and a former visiting scientist at UGA; Xueyan Fu and Sarah L. Booth, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Priya Ranjan, formerly at MTU and now at Oak Ridge National Laboratory; and UGA scientists Virgil (Ed) Johnson and Scott Harding, also formerly at MTU.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>