Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds molecular 'signature' for rapidly increasing form of esophageal cancer

25.03.2013
During the past 30 years, the number of patients with cancers that originate near the junction of the esophagus and stomach has increased approximately 600 percent in the United States.

The first extensive probe of the DNA of these esophageal adenocarcinomas (EACs) has revealed that many share a distinctive mix-up of letters of the genetic code, and found more than 20 mutated genes that had not previously been linked to the disease.

The research, led by scientists at Dana-Farber Cancer Institute, the Broad Institute, and other research centers, may offer clues to why EAC rates have risen so sharply. The findings, which are being released as an advanced online publication by Nature Genetics, point to an array of abnormal genes and proteins that may be lynchpins of EAC cell growth and therefore serve as targets for new therapies, according to the study's authors.

"Adenocarcinomas of the esophagus, particularly those that arise at the gastroesophageal junction, were extremely uncommon 40 years ago and now account for approximately 15,000 new cases in the United States each year," said Adam Bass, MD, of Dana-Farber and the Broad Institute, who is co-senior author of the paper with Gad Getz, PhD, of the Broad Institute and Massachusetts General Hospital.

"Unfortunately, it's also a disease with a generally poor prognosis: five years after diagnosis, only about 15 percent of patients are still alive. Bass added that despite the increased incidence of EAC, there have been few new approaches to treatment. "The goal of our study was to identify abnormalities within the genome of EAC cells to develop a foundation to better understand these tumors, diagnose them earlier, and develop better treatments," explained Bass.

EAC is thought to be associated with chronic gastroesophageal reflux, which sends stomach acid gurgling into the esophagus. This produces a condition known as Barrett's esophagus, in which cells at the lower end of the esophagus change to resemble cells in the intestine. Patients with Barrett's esophagus often go on to develop EAC.

Researchers don't know why EAC rates are increasing, but they speculate that it may be due to a rise in obesity, particularly in men: A heavier abdomen puts increased pressure on the stomach, causing acid to back up into the esophagus.

In the new study, researchers "sequenced" specific sections of DNA in cells from 149 EAC tissue samples, reading the individual letters of the genetic code within those areas. They focused on the one percent of the genome that holds the codes for making cell proteins. They also sequenced the entire genome – all the DNA within the cell nucleus – of cells from 15 of these EAC samples. Prior to this study, the largest sequencing study of EAC involved only a dozen tumor samples.

"We discovered a pattern of DNA changes that had not been seen before in any other cancer type," Getz remarked. The pattern involved a subtle swap in one of the four "nucleobases" that form the rungs of the DNA double helix, often designated by the letters C, T, G, and A. The investigators found that in many places where an A nucleobase was followed by another A nucleobase, the second "A" was replaced by a "C," a process known as transversion.

"We found this type of transversion throughout the genomes of the EAC cells we analyzed," Bass stated. "Overall, about one-third of all the mutations we discovered within these cells involved this type of transversion. In some tumor samples, these transversions accounted for nearly half of all mutations," Getz added.

Although A-to-C changes are not commonly observed in cancer, there is some evidence that oxidative damage can produce these changes. (Oxidative damage occurs when cells cannot neutralize the potentially harmful products of oxygen's reactions with other molecules.) "Gastric reflux can produce this type of damage, suggesting that reflux may underlie this pattern of mutations," Bass commented.

In addition to the mutational "signature" of AA becoming AC, the research team identified 26 genes that were frequently mutated in the tumor samples.

Five of these were "classic cancer genes" that had previously been implicated in EAC, Bass said, and the others were involved in a variety of cell processes.

Among the genes not previously linked to EAC were ELMO1 and DOCK2, mutations that can switch on a gene called RAC1, which can cause cancer cells to invade surrounding tissue. "The discovery of mutated ELMO1 and DOCK2 in many of these tumors may indicate that this invasive process is particularly active in EAC, promoting metastasis," Bass related. "We know that EAC tumors tend to spread at an earlier stage than many other cancers, which may help explain why survival rates for EAC patients tend to be low."

The RAC1 pathway – the network of genes that control RAC1 activity – is being pursued for pharmaceutical development. The discovery of ELMO1 and DOCK2 mutations in EAC samples may spur testing of new agents targeting this pathway in EAC, said Bass.

"Identifying the mutated genes within these tumors will help us understand the underlying biology of the disease," said Bass. "It also presents us with a slate of known genetic abnormalities that can someday be used to diagnose the disease at an early stage, classify tumors by the particular mutations within EAC cells, and ultimately develop treatment geared to precisely those mutations."

The lead authors of the study are Austin Dulak, PhD, and Petar Stojanov of Dana-Farber and the Broad Institute. Co-authors are: Shouyong Peng, PhD, Cameron Fox and Yu Imamura, MD, PhD, of Dana-Farber; Michael Lawrence, PhD, Chip Stewart, Erica Shefler, Aaron McKenna, Scott Carter, PhD, Kristian Cibulskis, Andrey Sivachenko, Gordon Saksena, Douglas Voet, Alex Ramos, PhD, Daniel Auclair, PhD, Kristin Thompson, PhD, Carrie Sougnez, Robert Onofrio, Stacey Gabriel, PhD, and Candace Guiducci, of the Broad Institute; Steven Schumacher, of Dana-Farber and the Broad; Rameen Beroukhim, MD, PhD, of Dana-Farber, the Broad Institute, and Brigham and Women's Hospital; Shuji Ogino, MD, PhD, of Dana-Farber, Brigham and Women's, and the Harvard School of Public Health; Todd Golub, MD, of Dana-Farber, the Broad Institute, and the Howard Hughes Medical Institute; Santhoshi Bandla, PhD, Tony Godfrey, PhD, and Zhongren Zhou, PhD, of the University of Rochester; Lin Lin, MD, PhD, Jules Lin, MD, Rishindra Reddy, MD, David Beer, PhD, and Andrew Chang, MD, of the University of Michigan; James Luketich, MD, Rodney Landrenau, MD, and Arjun Pennathur, MD, of the University of Pittsburgh Medical Center; and Eric Lander, DPhil, of the Broad Institute, and MIT.

The work was supported in part by grants from the U.S. National Human Genome Research Institute (U54 HG003067), the National Cancer Institute (K08 CA134931), the DeGregorio Family Foundation, the Karin Grunebaum Cancer Research Foundation, Target Cancer, and Connecticut Conquers Cancer.

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center, and it provides pediatric care with Boston Children's Hospital as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top-ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter or Facebook.

About the Broad Institute of MIT and Harvard

The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

Contact:
Anne Doerr
Anne_doerr@dfci.harvard.edu
Rob Levy
Robert_Levy@dfci.harvard.edu
(617) 632-4090

Anne Doerr | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>