Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds genetic variant plays role in cleft lip

07.10.2008
First time a genetic variant has been associated with cleft lip alone
University of Iowa researchers and collaborators have found, in a previously identified gene, a variation that likely contributes to one in five cases of isolated cleft lip. It is the first time a genetic variant has been associated with cleft lip alone, rather than both cleft lip and palate.

The study provides insight on a previously unknown genetic mechanism and could eventually help with diagnosis, prevention and treatment of cleft lip, which affects more than five million people worldwide. The findings appeared Oct. 5 in the journal Nature Genetics.

In 2004, a worldwide team involving the University of Iowa identified the gene IRF6 as a contributor to about 12 percent of cases of the common form of cleft lip and palate. The new finding pinpoints a regulatory part of the IRF6 gene that binds to a protein called AP2. This regulatory part controls how much and when the critical IRF6 protein is made.

The finding involved the lab of University of Iowa Carver College of Medicine faculty member Jeff Murray in collaboration with the University of Iowa lab of Frederick Domann, Ph.D., and adjunct faculty member Brian Schutte, Ph.D. Other investigators in Denmark, Norway, Scotland, Italy, the Philippines, California, and at the National Institutes of Health and the University of Pittsburgh were also critical to the investigation.

"We knew from the earlier study that IRF6 increases the risk of clefting. There are millions of common variants in the humane genome, but only a fraction have beneficial or harmful functions," said Fedik Rahimov, Ph.D., the lead author of the study and a graduate of the University of Iowa Interdisciplinary Program in Genetics, who worked in Murray's lab.

"We found that a common variant in the IRF6 gene severely disrupts the ability of AP2 to bind to it. This in turn disrupts proper expression of the IRF6 gene," said Rahimov, who is now a postdoctoral research fellow at Harvard Medical School.

The team used computational and biological approaches to conduct the study. First, with assistance from the NIH Intramural Sequencing Center at the National Human Genome Research Institute and based on previous University of Iowa research, the investigators used nonhuman DNA to predict potential regulatory sections around the gene in question.

Regulatory sections are separate from, but affect, the protein coding sections of genes. Regulatory sections are generally highly "conserved," meaning they have not changed much over evolution. However, one of the regulatory sections around IRF6 revealed a single nucleotide variant, so the team focused on the corresponding area in human DNA already identified by a previous UI graduate student.

Next, through a connection with the Lawrence Berkeley National Laboratory at the University of California, the variant was shown to reside in a regulatory element that controls IRF6 expression. The team then studied large DNA collections on cleft lip and palate and found that among nearly 3,000 families those with cleft lip only were far more likely to have the genetic variant.

"It was most striking that this variant was associated with clefts of the lip only," Rahimov said. "We always thought that cleft lip alone and cleft lip with cleft palate were the same disease. Now we see a difference and will analyze patients with cleft lip separately from those who have both cleft lip and palate."

The investigative work on AP2 involved collaboration between Rahimov and Michael Hitchler, Ph.D., currently a post-doctoral fellow at the University of Southern California and a recent graduate of the University of Iowa Graduate Program in Free Radical and Radiation Biology, who worked in Domann's lab. That lab was studying the role of AP2 in cancer, and so, already had developed research technology to study AP2 binding. Using this technology, the lab was able to rapidly provide evidence that AP2 was bound to the IRF6 regulatory region.

"Mike Hitchler was able to help Fedik show that the IRF6 gene had a bona fide binding site for the AP2 transcription factor, and that this binding site was disrupted by the genetic variant," said Domann, University of Iowa professor of radiation oncology. "This was very solid evidence for understanding this newly discovered mechanism behind cleft lip.

"It's a great example of what can be achieved when investigators from seemingly disparate fields collaborate and cooperate," Domann added.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: AP2 DNA Genetics IRF6 Rahimov bind cleft lip genetic mechanism genetic variant humane genome lip palate regulatory variant

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>