Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds genetic variant plays role in cleft lip

07.10.2008
First time a genetic variant has been associated with cleft lip alone
University of Iowa researchers and collaborators have found, in a previously identified gene, a variation that likely contributes to one in five cases of isolated cleft lip. It is the first time a genetic variant has been associated with cleft lip alone, rather than both cleft lip and palate.

The study provides insight on a previously unknown genetic mechanism and could eventually help with diagnosis, prevention and treatment of cleft lip, which affects more than five million people worldwide. The findings appeared Oct. 5 in the journal Nature Genetics.

In 2004, a worldwide team involving the University of Iowa identified the gene IRF6 as a contributor to about 12 percent of cases of the common form of cleft lip and palate. The new finding pinpoints a regulatory part of the IRF6 gene that binds to a protein called AP2. This regulatory part controls how much and when the critical IRF6 protein is made.

The finding involved the lab of University of Iowa Carver College of Medicine faculty member Jeff Murray in collaboration with the University of Iowa lab of Frederick Domann, Ph.D., and adjunct faculty member Brian Schutte, Ph.D. Other investigators in Denmark, Norway, Scotland, Italy, the Philippines, California, and at the National Institutes of Health and the University of Pittsburgh were also critical to the investigation.

"We knew from the earlier study that IRF6 increases the risk of clefting. There are millions of common variants in the humane genome, but only a fraction have beneficial or harmful functions," said Fedik Rahimov, Ph.D., the lead author of the study and a graduate of the University of Iowa Interdisciplinary Program in Genetics, who worked in Murray's lab.

"We found that a common variant in the IRF6 gene severely disrupts the ability of AP2 to bind to it. This in turn disrupts proper expression of the IRF6 gene," said Rahimov, who is now a postdoctoral research fellow at Harvard Medical School.

The team used computational and biological approaches to conduct the study. First, with assistance from the NIH Intramural Sequencing Center at the National Human Genome Research Institute and based on previous University of Iowa research, the investigators used nonhuman DNA to predict potential regulatory sections around the gene in question.

Regulatory sections are separate from, but affect, the protein coding sections of genes. Regulatory sections are generally highly "conserved," meaning they have not changed much over evolution. However, one of the regulatory sections around IRF6 revealed a single nucleotide variant, so the team focused on the corresponding area in human DNA already identified by a previous UI graduate student.

Next, through a connection with the Lawrence Berkeley National Laboratory at the University of California, the variant was shown to reside in a regulatory element that controls IRF6 expression. The team then studied large DNA collections on cleft lip and palate and found that among nearly 3,000 families those with cleft lip only were far more likely to have the genetic variant.

"It was most striking that this variant was associated with clefts of the lip only," Rahimov said. "We always thought that cleft lip alone and cleft lip with cleft palate were the same disease. Now we see a difference and will analyze patients with cleft lip separately from those who have both cleft lip and palate."

The investigative work on AP2 involved collaboration between Rahimov and Michael Hitchler, Ph.D., currently a post-doctoral fellow at the University of Southern California and a recent graduate of the University of Iowa Graduate Program in Free Radical and Radiation Biology, who worked in Domann's lab. That lab was studying the role of AP2 in cancer, and so, already had developed research technology to study AP2 binding. Using this technology, the lab was able to rapidly provide evidence that AP2 was bound to the IRF6 regulatory region.

"Mike Hitchler was able to help Fedik show that the IRF6 gene had a bona fide binding site for the AP2 transcription factor, and that this binding site was disrupted by the genetic variant," said Domann, University of Iowa professor of radiation oncology. "This was very solid evidence for understanding this newly discovered mechanism behind cleft lip.

"It's a great example of what can be achieved when investigators from seemingly disparate fields collaborate and cooperate," Domann added.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: AP2 DNA Genetics IRF6 Rahimov bind cleft lip genetic mechanism genetic variant humane genome lip palate regulatory variant

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>