Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds genetic variant plays role in cleft lip

07.10.2008
First time a genetic variant has been associated with cleft lip alone
University of Iowa researchers and collaborators have found, in a previously identified gene, a variation that likely contributes to one in five cases of isolated cleft lip. It is the first time a genetic variant has been associated with cleft lip alone, rather than both cleft lip and palate.

The study provides insight on a previously unknown genetic mechanism and could eventually help with diagnosis, prevention and treatment of cleft lip, which affects more than five million people worldwide. The findings appeared Oct. 5 in the journal Nature Genetics.

In 2004, a worldwide team involving the University of Iowa identified the gene IRF6 as a contributor to about 12 percent of cases of the common form of cleft lip and palate. The new finding pinpoints a regulatory part of the IRF6 gene that binds to a protein called AP2. This regulatory part controls how much and when the critical IRF6 protein is made.

The finding involved the lab of University of Iowa Carver College of Medicine faculty member Jeff Murray in collaboration with the University of Iowa lab of Frederick Domann, Ph.D., and adjunct faculty member Brian Schutte, Ph.D. Other investigators in Denmark, Norway, Scotland, Italy, the Philippines, California, and at the National Institutes of Health and the University of Pittsburgh were also critical to the investigation.

"We knew from the earlier study that IRF6 increases the risk of clefting. There are millions of common variants in the humane genome, but only a fraction have beneficial or harmful functions," said Fedik Rahimov, Ph.D., the lead author of the study and a graduate of the University of Iowa Interdisciplinary Program in Genetics, who worked in Murray's lab.

"We found that a common variant in the IRF6 gene severely disrupts the ability of AP2 to bind to it. This in turn disrupts proper expression of the IRF6 gene," said Rahimov, who is now a postdoctoral research fellow at Harvard Medical School.

The team used computational and biological approaches to conduct the study. First, with assistance from the NIH Intramural Sequencing Center at the National Human Genome Research Institute and based on previous University of Iowa research, the investigators used nonhuman DNA to predict potential regulatory sections around the gene in question.

Regulatory sections are separate from, but affect, the protein coding sections of genes. Regulatory sections are generally highly "conserved," meaning they have not changed much over evolution. However, one of the regulatory sections around IRF6 revealed a single nucleotide variant, so the team focused on the corresponding area in human DNA already identified by a previous UI graduate student.

Next, through a connection with the Lawrence Berkeley National Laboratory at the University of California, the variant was shown to reside in a regulatory element that controls IRF6 expression. The team then studied large DNA collections on cleft lip and palate and found that among nearly 3,000 families those with cleft lip only were far more likely to have the genetic variant.

"It was most striking that this variant was associated with clefts of the lip only," Rahimov said. "We always thought that cleft lip alone and cleft lip with cleft palate were the same disease. Now we see a difference and will analyze patients with cleft lip separately from those who have both cleft lip and palate."

The investigative work on AP2 involved collaboration between Rahimov and Michael Hitchler, Ph.D., currently a post-doctoral fellow at the University of Southern California and a recent graduate of the University of Iowa Graduate Program in Free Radical and Radiation Biology, who worked in Domann's lab. That lab was studying the role of AP2 in cancer, and so, already had developed research technology to study AP2 binding. Using this technology, the lab was able to rapidly provide evidence that AP2 was bound to the IRF6 regulatory region.

"Mike Hitchler was able to help Fedik show that the IRF6 gene had a bona fide binding site for the AP2 transcription factor, and that this binding site was disrupted by the genetic variant," said Domann, University of Iowa professor of radiation oncology. "This was very solid evidence for understanding this newly discovered mechanism behind cleft lip.

"It's a great example of what can be achieved when investigators from seemingly disparate fields collaborate and cooperate," Domann added.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: AP2 DNA Genetics IRF6 Rahimov bind cleft lip genetic mechanism genetic variant humane genome lip palate regulatory variant

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>