Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds genetic links to age of first menstrual period and menopause

19.05.2009
May add to prevention efforts against cancer, osteoporosis and heart disease

Newly identified gene variants associated with the age at which females experience their first menstrual period and the onset of menopause may help shed light on the prevention of breast and endometrial cancer, osteoporosis, and cardiovascular disease.

In a new study, researchers from Harvard School of Public Health (HSPH), Brigham and Women's Hospital (BWH), National Cancer Institute (NCI), and the Broad Institute of Harvard and MIT report that they have identified 10 genetic variants in two chromosomal regions associated with age at menarche (the first menstrual period), and 13 genetic variants in four chromosomal regions associated with age at natural menopause.

The paper, "Genome-wide association studies identify loci associated with age at menarche and at natural menopause," will publish online in Nature Genetics on May 17, 2009 ( http://www.nature.com/ng/journal/vaop/ncurrent/index.html ).

Menarche and natural menopause are two important physiological events in a woman's life. An early onset of menarche and later menopause are well-established risk factors for the development of breast cancer and endometrial cancer, the researchers explain. On the other hand, early menopause increases risk of osteoporosis and cardiovascular disease.

Previous studies have suggested both menarche and menopause may be partially under genetic control. To identify common genetic variants influencing these states, the researchers analyzed more than 317,000 gene variants in a total of 17,438 women from the Nurses' Health Study (NHS) and the Women's Genome Health Study (WGHS) based at BWH.

"At these newly identified loci, fine mapping or sequencing might lead to identification of the causal variants, and thus expand our knowledge of the underlying physiology and biological regulation of these traits," said lead author Chunyan He, who was a doctoral student in the HSPH Department of Epidemiology while conducting the research. "Insights into the genetic factors influencing the timing of menarche and natural menopause might shed light on normal reproductive function and the prevention of the diseases associated with these two traits."

Daniel Chasman, Director of Computational Biology in the Center for Cardiovascular Disease Prevention at BWH, said: "The collaboration of the WGHS and the NHS represents a great example of how large cohorts with genome-wide data can complement each other. While only one locus reached near genome-wide significance in the NHS alone, the meta-analysis of combined data had much more statistical power and revealed a total of two loci for timing of menarche and four for timing of menopause." Chasman, also an assistant professor at Harvard Medical School, added, "Of the loci for timing of menopause, three were already strong but not proven candidates in the NHS; these loci reached genome-wide significance in the WGHS alone, supplementing the meta-analysis by a second mode of validation through replication. The remaining locus, for timing of menopause, would not have been identified, even as a candidate, without the joint power of these two cohorts working together. Future collaborations will hopefully continue to leverage the combined power of the two cohorts for association studies directed at other clinical characteristics."

The NHS was begun in 1976 to investigate the potential long term consequences of the use of oral contraceptives. The studies were soon expanded to include diet and nutrition, in recognition of their roles in the development of chronic diseases. The research continues today with more than 116,000 women enrolled in the study.

The WGHS was announced in 2006 as a survey of genetic differences among 28,000 initially healthy American women who had already been tracked for over a decade for the development of heart disease, stroke, diabetes, and other common health disorders. Stored genetic samples from each participant undergo a fully confidential "genome-wide scan" evaluating more than 317,000 potential genetic differences.

"Genome-wide association studies identify loci associated with age at menarche and at natural menopause," Chunyan He, Peter Kraft, Constance Chen, Julie Buring, Guillaume Pare´, Susan Hankinson, Stephen Chanock, Paul Ridker, David Hunter, and Daniel Chasman, Nature Genetics, online May 17, 2009, http://www.nature.com/ng/journal/vaop/ncurrent/index.html

The Women's Genome Health Study (WGHS) is supported by the National Heart, Lung, and Blood Institute, National Cancer Institute, Donald W. Reynolds Foundation and the Fondation Leducq, with collaborative scientific support and funding for genotyping provided by Amgen. The Nurses' Health Study (NHS) is supported by the National Cancer Institute (NCI). The NHS genome-wide association study was performed as part of the Cancer Genetic Markers of Susceptibility initiative of the NCI.

Visit the HSPH website for the latest news ( http://www.hsph.harvard.edu/news/ ), press releases ( http://www.hsph.harvard.edu/news/press-releases/ ) and multimedia offerings ( http://www.hsph.harvard.edu/multimedia/ ).

Harvard School of Public Health ( http://www.hsph.harvard.edu ) is dedicated to advancing the public's health through learning, discovery, and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children's health to quality of care measurement; from health care management to international health and human rights.

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>