Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds genetic links to age of first menstrual period and menopause

19.05.2009
May add to prevention efforts against cancer, osteoporosis and heart disease

Newly identified gene variants associated with the age at which females experience their first menstrual period and the onset of menopause may help shed light on the prevention of breast and endometrial cancer, osteoporosis, and cardiovascular disease.

In a new study, researchers from Harvard School of Public Health (HSPH), Brigham and Women's Hospital (BWH), National Cancer Institute (NCI), and the Broad Institute of Harvard and MIT report that they have identified 10 genetic variants in two chromosomal regions associated with age at menarche (the first menstrual period), and 13 genetic variants in four chromosomal regions associated with age at natural menopause.

The paper, "Genome-wide association studies identify loci associated with age at menarche and at natural menopause," will publish online in Nature Genetics on May 17, 2009 ( http://www.nature.com/ng/journal/vaop/ncurrent/index.html ).

Menarche and natural menopause are two important physiological events in a woman's life. An early onset of menarche and later menopause are well-established risk factors for the development of breast cancer and endometrial cancer, the researchers explain. On the other hand, early menopause increases risk of osteoporosis and cardiovascular disease.

Previous studies have suggested both menarche and menopause may be partially under genetic control. To identify common genetic variants influencing these states, the researchers analyzed more than 317,000 gene variants in a total of 17,438 women from the Nurses' Health Study (NHS) and the Women's Genome Health Study (WGHS) based at BWH.

"At these newly identified loci, fine mapping or sequencing might lead to identification of the causal variants, and thus expand our knowledge of the underlying physiology and biological regulation of these traits," said lead author Chunyan He, who was a doctoral student in the HSPH Department of Epidemiology while conducting the research. "Insights into the genetic factors influencing the timing of menarche and natural menopause might shed light on normal reproductive function and the prevention of the diseases associated with these two traits."

Daniel Chasman, Director of Computational Biology in the Center for Cardiovascular Disease Prevention at BWH, said: "The collaboration of the WGHS and the NHS represents a great example of how large cohorts with genome-wide data can complement each other. While only one locus reached near genome-wide significance in the NHS alone, the meta-analysis of combined data had much more statistical power and revealed a total of two loci for timing of menarche and four for timing of menopause." Chasman, also an assistant professor at Harvard Medical School, added, "Of the loci for timing of menopause, three were already strong but not proven candidates in the NHS; these loci reached genome-wide significance in the WGHS alone, supplementing the meta-analysis by a second mode of validation through replication. The remaining locus, for timing of menopause, would not have been identified, even as a candidate, without the joint power of these two cohorts working together. Future collaborations will hopefully continue to leverage the combined power of the two cohorts for association studies directed at other clinical characteristics."

The NHS was begun in 1976 to investigate the potential long term consequences of the use of oral contraceptives. The studies were soon expanded to include diet and nutrition, in recognition of their roles in the development of chronic diseases. The research continues today with more than 116,000 women enrolled in the study.

The WGHS was announced in 2006 as a survey of genetic differences among 28,000 initially healthy American women who had already been tracked for over a decade for the development of heart disease, stroke, diabetes, and other common health disorders. Stored genetic samples from each participant undergo a fully confidential "genome-wide scan" evaluating more than 317,000 potential genetic differences.

"Genome-wide association studies identify loci associated with age at menarche and at natural menopause," Chunyan He, Peter Kraft, Constance Chen, Julie Buring, Guillaume Pare´, Susan Hankinson, Stephen Chanock, Paul Ridker, David Hunter, and Daniel Chasman, Nature Genetics, online May 17, 2009, http://www.nature.com/ng/journal/vaop/ncurrent/index.html

The Women's Genome Health Study (WGHS) is supported by the National Heart, Lung, and Blood Institute, National Cancer Institute, Donald W. Reynolds Foundation and the Fondation Leducq, with collaborative scientific support and funding for genotyping provided by Amgen. The Nurses' Health Study (NHS) is supported by the National Cancer Institute (NCI). The NHS genome-wide association study was performed as part of the Cancer Genetic Markers of Susceptibility initiative of the NCI.

Visit the HSPH website for the latest news ( http://www.hsph.harvard.edu/news/ ), press releases ( http://www.hsph.harvard.edu/news/press-releases/ ) and multimedia offerings ( http://www.hsph.harvard.edu/multimedia/ ).

Harvard School of Public Health ( http://www.hsph.harvard.edu ) is dedicated to advancing the public's health through learning, discovery, and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children's health to quality of care measurement; from health care management to international health and human rights.

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>