Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds circadian clock rhythms altered in depression

14.05.2013
UC Irvine Health researchers have helped discover that genes controlling circadian clock rhythms are profoundly altered in the brains of people with severe depression. These clock genes regulate 24-hour circadian rhythms affecting hormonal, body temperature, sleep and behavioral patterns.

Depression is a serious disorder with a high risk for suicide affecting approximately one in 10 Americans, according to the Centers for Disease Control, and is ranked as fourth of all diseases by the World Health Organization in terms of lifetime disability.

Study findings provide the first evidence of altered circadian gene rhythms in brain tissue of people with depression and suggest a physical basis for many of the symptoms that depressed patients report.

The study – which appears online this week in the Proceedings of the National Academy of Sciences – involved researchers from UC Irvine Health, University of Michigan, UC Davis, Cornell University, the Hudson Alpha Institute for Biotechnology and Stanford University.

“Our findings involved the analysis of a large amount of data involving 12,000 gene transcripts obtained from donated brain tissue from depressed and normal people. We were amazed that our data revealed that clock gene rhythms varied in synchrony across six regions of normal human brain and that these rhythms were significantly disrupted in depressed patients. The findings provide clues for potential new classes of compounds to rapidly treat depression that may reset abnormal clock genes and normalize circadian rhythms,” said Dr. William Bunney, the study's senior author, and Distinguished Professor of Psychiatry & Human Behavior at UC Irvine.

Circadian clock genes play an important role in regulating many body rhythms over a 24-hour cycle. Although animal data provide evidence for the circadian expression of genes in brain, little has been known as to whether there is a similar rhythmicity in the human brain.

In the study, the researchers analyzed genome-wide gene expression patterns in brain samples from 55 individuals with no history of psychiatric or neurological illness and compared them to the expression patterns in samples from 34 severely depressed patients.

The investigators isolated multiple RNA samples from six regions of each brain and arranged the gene expression data around a 24-hour cycle based on time of death. Several hundred genes in each of six brain regions displayed rhythmic patterns of expression over the 24-hour cycle, including many genes essential to the body’s circadian machinery.

In the end, they had a near-complete understanding of how gene activity varied throughout the day in the cells of the six brain regions they studied.

“There really was a moment of discovery when we realized that many of the genes that we saw expressed in the normal individuals were well-known circadian rhythm genes – and when we saw that the people with depression were not synchronized to the usual solar day in terms of this gene activity,” said Jun Li, an assistant professor in the Department of Human Genetics at the University of Michigan who led the analysis of the massive amount of data generated by the rest of the team.

The researchers add that this information can be used to help find new ways to predict depression, and fine-tune treatment for depressed patients.

Blynn Bunney, David Walsh, Marquis Vawter and Preston Cartagena of UC Irvine; Fan Meng, Simon Evans, Megan Hagenauer, Stanley Watson Jr., and Huda Akil from Michigan; Edward Jones and Prabakhara Choudary with UC Davis; Jack Barchas with Weill Cornell Medical College, New York; Alan Schatzberg with Stanford; and Richard Myers with the HudsonAlpha Institute for Biotechnology, Huntsville, Ala., also contributed to the study.

The Pritzker Neuropsychiatric Disorders Research Fund, the National Institute of Mental Health, William Lion Penzner Foundation, the Della Martin Foundation, the Office of Naval Research, the National Alliance for Research on Schizophrenia and Depression’s Abramson Family Foundation Investigator Award, and an International Mental Health Research Organization – Johnson & Johnson Rising Star Translational Research Award supported the research.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>