Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds circadian clock rhythms altered in depression

14.05.2013
UC Irvine Health researchers have helped discover that genes controlling circadian clock rhythms are profoundly altered in the brains of people with severe depression. These clock genes regulate 24-hour circadian rhythms affecting hormonal, body temperature, sleep and behavioral patterns.

Depression is a serious disorder with a high risk for suicide affecting approximately one in 10 Americans, according to the Centers for Disease Control, and is ranked as fourth of all diseases by the World Health Organization in terms of lifetime disability.

Study findings provide the first evidence of altered circadian gene rhythms in brain tissue of people with depression and suggest a physical basis for many of the symptoms that depressed patients report.

The study – which appears online this week in the Proceedings of the National Academy of Sciences – involved researchers from UC Irvine Health, University of Michigan, UC Davis, Cornell University, the Hudson Alpha Institute for Biotechnology and Stanford University.

“Our findings involved the analysis of a large amount of data involving 12,000 gene transcripts obtained from donated brain tissue from depressed and normal people. We were amazed that our data revealed that clock gene rhythms varied in synchrony across six regions of normal human brain and that these rhythms were significantly disrupted in depressed patients. The findings provide clues for potential new classes of compounds to rapidly treat depression that may reset abnormal clock genes and normalize circadian rhythms,” said Dr. William Bunney, the study's senior author, and Distinguished Professor of Psychiatry & Human Behavior at UC Irvine.

Circadian clock genes play an important role in regulating many body rhythms over a 24-hour cycle. Although animal data provide evidence for the circadian expression of genes in brain, little has been known as to whether there is a similar rhythmicity in the human brain.

In the study, the researchers analyzed genome-wide gene expression patterns in brain samples from 55 individuals with no history of psychiatric or neurological illness and compared them to the expression patterns in samples from 34 severely depressed patients.

The investigators isolated multiple RNA samples from six regions of each brain and arranged the gene expression data around a 24-hour cycle based on time of death. Several hundred genes in each of six brain regions displayed rhythmic patterns of expression over the 24-hour cycle, including many genes essential to the body’s circadian machinery.

In the end, they had a near-complete understanding of how gene activity varied throughout the day in the cells of the six brain regions they studied.

“There really was a moment of discovery when we realized that many of the genes that we saw expressed in the normal individuals were well-known circadian rhythm genes – and when we saw that the people with depression were not synchronized to the usual solar day in terms of this gene activity,” said Jun Li, an assistant professor in the Department of Human Genetics at the University of Michigan who led the analysis of the massive amount of data generated by the rest of the team.

The researchers add that this information can be used to help find new ways to predict depression, and fine-tune treatment for depressed patients.

Blynn Bunney, David Walsh, Marquis Vawter and Preston Cartagena of UC Irvine; Fan Meng, Simon Evans, Megan Hagenauer, Stanley Watson Jr., and Huda Akil from Michigan; Edward Jones and Prabakhara Choudary with UC Davis; Jack Barchas with Weill Cornell Medical College, New York; Alan Schatzberg with Stanford; and Richard Myers with the HudsonAlpha Institute for Biotechnology, Huntsville, Ala., also contributed to the study.

The Pritzker Neuropsychiatric Disorders Research Fund, the National Institute of Mental Health, William Lion Penzner Foundation, the Della Martin Foundation, the Office of Naval Research, the National Alliance for Research on Schizophrenia and Depression’s Abramson Family Foundation Investigator Award, and an International Mental Health Research Organization – Johnson & Johnson Rising Star Translational Research Award supported the research.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>