Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cancer-fighting goodness in cholesterol

20.04.2012
A Simon Fraser University researcher is among four scientists who argue that cholesterol may slow or stop cancer cell growth.

They describe how cholesterol-binding proteins called ORPs may control cell growth in A Detour for Yeast Oxysterol Binding Proteins, a paper published in the latest issue of the Journal of Biological Chemistry.

The scientists came to their conclusion while trying to understand how cholesterol moves around inside cells in the fat's journey to cell surfaces where it reinforces their outer membrane.

"The assumption was that ORPs bind and transport cholesterol inside cells in a similar fashion to how lipoproteins bind and move around the fat outside cells through the blood stream," explains Chris Beh. The SFU associate professor of molecular biology and biochemistry co-authored this paper.

Beh and his colleagues noted that genetic changes engineered by them block the ability of ORPs to bind cholesterol but don't stop ORPs from functioning. In fact, these altered ORPs work better and activate other regulator proteins, which in turn trigger a variety of cellular processes that stimulate cell growth.

The scientists believe this happened because cholesterol-binding normally interferes with ORPs' ability to bind to another lipid or fat called PI4P, which is important for cell growth.

"That told us that ORPs probably have nothing to do with moving around cholesterol within cells," says Beh. "Rather cholesterol-binding puts the brakes on ORP's ability to bind to PI4P which, if left unchecked, could accelerate cell growth like crazy," says Beh. "Given that uncontrolled cell growth is a key feature of cancer, this means gaining a better understanding of the true purpose of cholesterol-binding within cells could be important in cancer treatment."

Beh and his colleagues draw on two important facts to support their conclusion.

"First, cancer cells require ORPs to survive," explains Beh. "Second, other scientists have previously shown that a new class of natural compounds that look like steroids or cholesterol can kill a broad spectrum of different cancer cells."

Beh says he and his research partners will now find out exactly which proteins respond to ORP activation and under what circumstances does cholesterol turn off ORP's activation of them.

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: ORP cancer cells cell growth cell surface cellular process

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>