Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cancer-fighting goodness in cholesterol

20.04.2012
A Simon Fraser University researcher is among four scientists who argue that cholesterol may slow or stop cancer cell growth.

They describe how cholesterol-binding proteins called ORPs may control cell growth in A Detour for Yeast Oxysterol Binding Proteins, a paper published in the latest issue of the Journal of Biological Chemistry.

The scientists came to their conclusion while trying to understand how cholesterol moves around inside cells in the fat's journey to cell surfaces where it reinforces their outer membrane.

"The assumption was that ORPs bind and transport cholesterol inside cells in a similar fashion to how lipoproteins bind and move around the fat outside cells through the blood stream," explains Chris Beh. The SFU associate professor of molecular biology and biochemistry co-authored this paper.

Beh and his colleagues noted that genetic changes engineered by them block the ability of ORPs to bind cholesterol but don't stop ORPs from functioning. In fact, these altered ORPs work better and activate other regulator proteins, which in turn trigger a variety of cellular processes that stimulate cell growth.

The scientists believe this happened because cholesterol-binding normally interferes with ORPs' ability to bind to another lipid or fat called PI4P, which is important for cell growth.

"That told us that ORPs probably have nothing to do with moving around cholesterol within cells," says Beh. "Rather cholesterol-binding puts the brakes on ORP's ability to bind to PI4P which, if left unchecked, could accelerate cell growth like crazy," says Beh. "Given that uncontrolled cell growth is a key feature of cancer, this means gaining a better understanding of the true purpose of cholesterol-binding within cells could be important in cancer treatment."

Beh and his colleagues draw on two important facts to support their conclusion.

"First, cancer cells require ORPs to survive," explains Beh. "Second, other scientists have previously shown that a new class of natural compounds that look like steroids or cholesterol can kill a broad spectrum of different cancer cells."

Beh says he and his research partners will now find out exactly which proteins respond to ORP activation and under what circumstances does cholesterol turn off ORP's activation of them.

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: ORP cancer cells cell growth cell surface cellular process

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>