Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides documentation that tumor 'stem-like cells' exist in benign tumors

27.07.2009
Cancer stem-like cells have been implicated in the genesis of a variety of malignant cancers. Research scientists at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Institute have isolated stem-like cells in benign (pituitary) tumors and used these "mother" cells to generate new tumors in laboratory mice. Targeting the cells of origin is seen as a possible strategy in the fight against malignant and benign tumors.

Cells generated from the pituitary tumor cells had the same genetic makeup and characteristics as the original tumors and were capable of generating new tumors, according to an article in the July 2009 issue of the British Journal of Cancer, posted online June 30.

Normal stem cells have the ability to self-renew and the potential to "differentiate" into any of several types of cells. Tumor stem-like cells appear to have the same self-renewing and multipotent properties, but instead of producing healthy cells, they propagate tumor cells. In this study, benign tumor stem-like cells were analyzed for their genetic makeup and behavior.

Pituitary adenomas have unusual characteristics that provided significant clues about several types of stem cells. The pituitary gland, situated at the base of the brain behind the nose, is stimulated by hormones from the hypothalamus gland to produce a variety of hormones that control other glands throughout the body. About half of all pituitary adenomas – which arise from pituitary gland tissue – also have this hormone-producing capability.

In these studies, the scientists isolated stem-like cells from both hormone-producing and non-producing pituitary adenomas that had been surgically removed from eight patients. Laboratory experiments focused on tumor stem cells from one tumor that produced growth hormone and one tumor that produced no hormones. Both types of stem-like cells were found to be self-renewable and multipotent, meaning they expressed proteins that could enable their offspring to differentiate into several types of cells.

Studies also showed that both hormone-producing and non-producing tumor stem cells can be differentiated into hormone-producing cells, with the specific hormones produced being determined by the characteristics of the original pituitary tumor.

Consistent with the researchers' earlier findings in cancer stem-like cells of malignant brain tumors, the tumor stem cells – but not the "daughter" cells – appeared to be resistant to chemotherapy. This suggests that even if most of a tumor's cells can be killed, stem-like cells may survive and regenerate the tumor.

When tumor stem-like cells were implanted into laboratory mice, they generated new tumors that had the same genetic composition and characteristics as the original tumors. Cells from the new tumors, later transplanted into other mice, maintained the same tumor-specific properties.

"Although previous studies have offered evidence of the existence of stem-like cells in pituitary adenomas, in this study we scrutinized these cells for composition and function, demonstrating that stem-like cells exist in benign tumors," said neurosurgeon John S. Yu, M.D., director of Surgical Neuro-oncology at Cedars-Sinai Medical Center. He is senior author of the journal article.

Although pituitary adenomas are typically noncancerous, they can cause significant injury or illness, either by compressing important structures, such as the optic nerve, or by creating hormone imbalances that can have wide-ranging and serious consequences. Identifying the mechanisms that enable these and other tumors to form may provide unique targets for new, more effective therapies.

"From our work with cancer stem-like cells in malignant brain cancers, it appears that stem cells from different cancers – or possibly even within the same tumor – may use different signaling pathways and have different implications for disease progression and prognosis. Findings from the pituitary tumor study generally support the cancer stem cell hypothesis, suggesting that similar mechanisms may be involved in the generation of both malignant and benign tumors," said Keith L. Black, M.D., chairman of the Department of Neurosurgery at Cedars-Sinai.

"Confirmation of the existence of stem-like cells in benign tumors is intriguing," said Yu, "but many questions remain to be answered, particularly in defining the molecular mechanisms involved. We need to find out if there is any relationship between tumor stem cells and normal pituitary stem cells, and how stem cells from benign tumors are different from and similar to those of malignant tumors."

Research scientists from Cedars-Sinai's departments of Neurosurgery, Pathology and Laboratory Medicine, and Surgery participated in these studies, which were partly funded by the National Institutes of Health (NIH) and the Italian Association for Neurological Research (ARIN).

Citation: British Journal of Cancer: "Isolation of tumour stem-like cells from benign tumours." July 2009: http://www.nature.com/bjc/journal/v101/n2/abs/6605142a.html

Sandy Van | EurekAlert!
Further information:
http://www.csmc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>