Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study determines double flu jab needed against bird flu pandemic

09.10.2008
An international study led by University of Leicester researchers has determined that vaccination will be the best way to protect people in the event of the next influenza pandemic – but that each person would need two doses.

In an article in the New England Journal of Medicine published on October 9, researchers from the University of Leicester and University Hospitals of Leicester report on a study carried out at the Leicester Royal Infirmary.

Dr Iain Stephenson, Consultant in Infectious Diseases at the Infirmary and a Clinical Senior Lecturer at the University of Leicester carried out the research with Professor Karl Nicholson, Professor of Infectious Diseases at the University of Leicester and Consultant Physician at the Leicester Royal Infirmary.

The research was carried out in collaboration with Katja Hoschler, and Maria C. Zambon of the Health Protection Agency, Kathy Hancock, Joshua DeVos, Jacqueline M. Katz, from the Centers for Disease Control and Prevention, Atlanta, Michaela Praus and Angelika Banzhoff, from Novartis Vaccine, Germany. It is published in a letter to the NEJM.

An influenza pandemic occurs when a new influenza strain emerges (one to which humans have no immunity), mutates and spreads globally as a virus. Although it is not possible to predict the actual pandemic influenza strain, global health authorities have identified H5N1 avian influenza as a strain with the greatest pandemic potential in humans. H5N1 is currently circulating in birds and has caused serious illness in more than 380 people worldwide with a mortality rate, among people known to have been infected, of greater than 60 percent.

Dr Stephenson said: “In the event of the next influenza pandemic, vaccination will be the best way to protect people. Because of manufacturing capacity constraints, vaccines ideally need to be as a low dose as possible so that limited antigen material can be optimally used.

“In addition, it generally takes two doses of vaccine to give a good response, so if a pandemic occurred it would take some time to produce vaccine and then administer 2 doses to protect people. Therefore stockpiling of vaccines has been suggested to overcome some of these difficulties. However, subjects will still require 2 doses to generate protection and if the pandemic spreads rapidly this could be challenging to deliver.”

The Leicester study looks at boosting those people who were vaccinated up to 7 years ago in the first H5 vaccine trials conducted in Leicester with a new updated H5 vaccine, in comparison to vaccinating subjects for the first time.

“We have found that a single low dose booster vaccine, given 7 years later, generated a very rapid response and within 1 week of vaccination, over 80% subjects had an excellent response to all strains of the H5 virus. In comparison, the unprimed subjects who were vaccinated for the first time needed two doses of vaccine and achieved protective levels of antibody after 6 weeks as expected.

The results indicate that regardless of which avian strain individuals are originally primed with, they are quickly protected against a broad range of avian strains following their booster vaccine, even strains they were not initially inoculated against. These results potentially provide a rationale to prevent pandemic influenza by proactively immunizing the public with stockpiled pre-pandemic vaccines.

“Therefore the importance of this study is to help policy makers decide how to use the stockpiled vaccine. We find that proactively priming subjects (such as key personnel and first responders) to generate long lived memory immune responses that could be boosted rapidly many years later could be used as a potential vaccination strategy.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>