Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details genes that control whether tumors adapt or die when faced with p53 activating drugs

23.05.2013
When turned on, the gene p53 turns off cancer. However, when existing drugs boost p53, only a few tumors die – the rest resist the challenge.
A study published in the journal Cell Reports shows how: tumors that live even in the face of p53 reactivation create more of the protein p21 than the protein PUMA; tumors that die have more PUMA than p21. And, for the first time, the current study shows a handful of genes that control this ratio.

“The gene p53 is one of the most commonly mutated cancer genes. Tumors turn it off and then they can avoid controls that should kill them. Fine: we have drugs that can reactivate p53. But the bad news is when we go into the clinic with these drugs, only maybe one in ten tumors actually dies. We wanted to know what genes fine-tune this p53 effectiveness,” says Joaquin Espinosa, PhD, investigator at the University of Colorado Cancer Center, associate professor in the Department of Molecular, Cellular and Developmental Biology at CU Boulder, and the paper’s senior author.

To answer that question, the group including first author Zdenek Andrisyk, PhD, postdoc in the Espinosa Lab, turned off every gene in the human genome in turn and asked if there were genes that, when deactivated, would tip the balance from p21 to PUMA, thus enhancing the likelihood of cell death.

“We found a couple dozen genes involved in this ratio – genes that with p53 activated, lead to more p21 and better survival or more PUMA and more cell death,” Espinosa says.

The hope is that in addition to drugs that reactivate the tumor-suppressor gene p53, patients could be given a second drug targeting genes that control this p21/PUMA ratio, thus making first drug more effective. Likewise, in cases in which toxicity in healthy tissue limits the use of p53 activating drugs, Espinosa’s research could lead to new drugs that thumb the scale of the p21/PUMA ratio toward survival in these healthy tissues. Up or down: learning to adjust the ratio has immense promise.

The group’s next step is likely repeating the genetic screen with additional tumor and healthy cell lines to discover which of their newly discovered candidate genes are common controllers of the p21/PUMA ratio across cancer types. And, interestingly, the same technique could be used to make many existing drugs more effective.

“With many of these molecularly targeted therapies, you want one effect but then you end up with many other possible effects,” Espinosa says. (An example is the recently-reported side effect of low testosterone in male lung cancer patient taking the molecularly targeted drug crizotinib.) The genetic screening technique used in the Espinosa lab could help disentangle effect from side effect – showing which secondary genes regulate the desired, tumor-killing response and which secondary genes lead to undesirable side-effects.

“Not only could this technique lead to drugs that decrease the side effects of targeted therapies, but if you’re not limited by these side effects, you can simply give more drug, perhaps making existing drugs much more powerful,” Espinosa says.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>