Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details genes that control whether tumors adapt or die when faced with p53 activating drugs

23.05.2013
When turned on, the gene p53 turns off cancer. However, when existing drugs boost p53, only a few tumors die – the rest resist the challenge.
A study published in the journal Cell Reports shows how: tumors that live even in the face of p53 reactivation create more of the protein p21 than the protein PUMA; tumors that die have more PUMA than p21. And, for the first time, the current study shows a handful of genes that control this ratio.

“The gene p53 is one of the most commonly mutated cancer genes. Tumors turn it off and then they can avoid controls that should kill them. Fine: we have drugs that can reactivate p53. But the bad news is when we go into the clinic with these drugs, only maybe one in ten tumors actually dies. We wanted to know what genes fine-tune this p53 effectiveness,” says Joaquin Espinosa, PhD, investigator at the University of Colorado Cancer Center, associate professor in the Department of Molecular, Cellular and Developmental Biology at CU Boulder, and the paper’s senior author.

To answer that question, the group including first author Zdenek Andrisyk, PhD, postdoc in the Espinosa Lab, turned off every gene in the human genome in turn and asked if there were genes that, when deactivated, would tip the balance from p21 to PUMA, thus enhancing the likelihood of cell death.

“We found a couple dozen genes involved in this ratio – genes that with p53 activated, lead to more p21 and better survival or more PUMA and more cell death,” Espinosa says.

The hope is that in addition to drugs that reactivate the tumor-suppressor gene p53, patients could be given a second drug targeting genes that control this p21/PUMA ratio, thus making first drug more effective. Likewise, in cases in which toxicity in healthy tissue limits the use of p53 activating drugs, Espinosa’s research could lead to new drugs that thumb the scale of the p21/PUMA ratio toward survival in these healthy tissues. Up or down: learning to adjust the ratio has immense promise.

The group’s next step is likely repeating the genetic screen with additional tumor and healthy cell lines to discover which of their newly discovered candidate genes are common controllers of the p21/PUMA ratio across cancer types. And, interestingly, the same technique could be used to make many existing drugs more effective.

“With many of these molecularly targeted therapies, you want one effect but then you end up with many other possible effects,” Espinosa says. (An example is the recently-reported side effect of low testosterone in male lung cancer patient taking the molecularly targeted drug crizotinib.) The genetic screening technique used in the Espinosa lab could help disentangle effect from side effect – showing which secondary genes regulate the desired, tumor-killing response and which secondary genes lead to undesirable side-effects.

“Not only could this technique lead to drugs that decrease the side effects of targeted therapies, but if you’re not limited by these side effects, you can simply give more drug, perhaps making existing drugs much more powerful,” Espinosa says.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>