Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study uses Chinese wolfberries to improve vision imperfections caused by type-2 diabetes

31.03.2010
A Kansas State University researcher is exploring the use of Chinese wolfberries to improve vision deficiencies that are common for type-2 diabetics.

Dingbo "Daniel" Lin, K-State research assistant professor of human nutrition, is studying wolfberries and their potential to improve damage to the retina. His findings show that the fruit can lower the oxidative stress that the eye undergoes as a result of type-2 diabetes.

"I would not say that wolfberries are a medicine, but they can be used as a dietary supplement to traditional treatments to improve vision," Lin said. "Wolfberries have high antioxidant activity and are very beneficial to protect against oxidative stress caused by environmental stimuli and genetic mutations."

Lin has experience in biochemistry and eye research, and he wanted to bridge his current work in nutrition with vision. In a conversation about the eye and phytochemicals Lin had with his father, a traditional medical doctor in China, Lin decided to explore the use of wolfberries for vision improvement.

"In our culture's history, we have traditional medicine literature that describes things like the wolfberry and its functions," Lin said.

Wolfberries are bright orange-red, oblong-shaped and grown in China. Lin said the fruit is known to help rebalance homeostasis, boost the immune system, nourish the liver and kidneys and improve vision. He wanted to understand the mechanisms of the wolfberry's effects on vision and started the project in July 2008.

Lin and his colleagues have found that wolfberries have high levels of zeaxanthin, lutein, polysaccharides and polyphenolics, which have been shown to improve vision, including the prevention of age-related macular degeneration and diabetic retinopathy.

The researchers are using dried wolfberries and examining their effects on the retina pigment epithelial cell layer.

"It's the only cell layer in the far back of the retina, and it provides a fundamental support to the whole retina, just like the base of a building," Lin said. "All of the nutrients pass through that cell layer."

By using type-2 diabetic mice, the researchers are studying the effects of wolfberries on oxidative stress, one of the factors that occurs in diabetic retinopathy, which is a common complication of diabetes and the leading cause of blindness in American adults.

"Oxidative stress is known as cell impairment of the production of reactive oxygen," Lin said. "Cellular oxidative stress is involved in many human diseases, such as diabetes, vision impairment and blindness."

The researchers also looked at the endoplasmic reticulum, which is where the folding process of proteins occurs in a cell. When the accumulation of unfolded protein aggregates occurs persistently, the endoplasmic reticulum is under stress. Prolonged stress will eventually cause cell deaths, Lin said.

The in vitro and in vivo studies have shown that the wolfberry's phytochemicals protect the retinal pigment epithelial cells from hyperglycemia, or high glucose. The findings show that the fruit has local effects on oxidative stress, reactivates the enzyme AMPK and reduces endoplasmic reticulum stress.

"AMPK is a key enzyme in the balance of cell energy homeostasis," Lin said. "The outcome of the current research will lead to the development of dietary regimens in prevention of an eye disease."

The researchers are continuing to study wolfberries and their health benefits. Lin said wolfberries could be used as a dietary supplement, though the fruit isn't likely to be found in traditional U.S. food stores. He said consumers might find them in a Chinese food store or on the Internet.

The research is part of a fast-moving field called nutrigenomics, which studies the effects of food on gene expression and disease. Nutrients have been shown to affect gene expression, and by understanding the roles of specific nutrients and how they might cause diseases, scientists could recommend specific foods for an individual based on his or her genetics.

At K-State, other researchers collaborated on the project: Denis Medeiros, professor and department head of human nutrition; Yu Jiang, research associate in human nutrition; Edlin Ortiz, junior in life sciences, Liberal; and Yunong Zhang, a former research assistant in human nutrition.

The research has been presented at the 2009 Experimental Biology conference and 2009 American Society of Cell Biology Conference. The project is funded by a grant from K-State's Center of Biomedical Research Excellence.

Dingbo "Daniel" Lin | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>