Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study uses Chinese wolfberries to improve vision imperfections caused by type-2 diabetes

31.03.2010
A Kansas State University researcher is exploring the use of Chinese wolfberries to improve vision deficiencies that are common for type-2 diabetics.

Dingbo "Daniel" Lin, K-State research assistant professor of human nutrition, is studying wolfberries and their potential to improve damage to the retina. His findings show that the fruit can lower the oxidative stress that the eye undergoes as a result of type-2 diabetes.

"I would not say that wolfberries are a medicine, but they can be used as a dietary supplement to traditional treatments to improve vision," Lin said. "Wolfberries have high antioxidant activity and are very beneficial to protect against oxidative stress caused by environmental stimuli and genetic mutations."

Lin has experience in biochemistry and eye research, and he wanted to bridge his current work in nutrition with vision. In a conversation about the eye and phytochemicals Lin had with his father, a traditional medical doctor in China, Lin decided to explore the use of wolfberries for vision improvement.

"In our culture's history, we have traditional medicine literature that describes things like the wolfberry and its functions," Lin said.

Wolfberries are bright orange-red, oblong-shaped and grown in China. Lin said the fruit is known to help rebalance homeostasis, boost the immune system, nourish the liver and kidneys and improve vision. He wanted to understand the mechanisms of the wolfberry's effects on vision and started the project in July 2008.

Lin and his colleagues have found that wolfberries have high levels of zeaxanthin, lutein, polysaccharides and polyphenolics, which have been shown to improve vision, including the prevention of age-related macular degeneration and diabetic retinopathy.

The researchers are using dried wolfberries and examining their effects on the retina pigment epithelial cell layer.

"It's the only cell layer in the far back of the retina, and it provides a fundamental support to the whole retina, just like the base of a building," Lin said. "All of the nutrients pass through that cell layer."

By using type-2 diabetic mice, the researchers are studying the effects of wolfberries on oxidative stress, one of the factors that occurs in diabetic retinopathy, which is a common complication of diabetes and the leading cause of blindness in American adults.

"Oxidative stress is known as cell impairment of the production of reactive oxygen," Lin said. "Cellular oxidative stress is involved in many human diseases, such as diabetes, vision impairment and blindness."

The researchers also looked at the endoplasmic reticulum, which is where the folding process of proteins occurs in a cell. When the accumulation of unfolded protein aggregates occurs persistently, the endoplasmic reticulum is under stress. Prolonged stress will eventually cause cell deaths, Lin said.

The in vitro and in vivo studies have shown that the wolfberry's phytochemicals protect the retinal pigment epithelial cells from hyperglycemia, or high glucose. The findings show that the fruit has local effects on oxidative stress, reactivates the enzyme AMPK and reduces endoplasmic reticulum stress.

"AMPK is a key enzyme in the balance of cell energy homeostasis," Lin said. "The outcome of the current research will lead to the development of dietary regimens in prevention of an eye disease."

The researchers are continuing to study wolfberries and their health benefits. Lin said wolfberries could be used as a dietary supplement, though the fruit isn't likely to be found in traditional U.S. food stores. He said consumers might find them in a Chinese food store or on the Internet.

The research is part of a fast-moving field called nutrigenomics, which studies the effects of food on gene expression and disease. Nutrients have been shown to affect gene expression, and by understanding the roles of specific nutrients and how they might cause diseases, scientists could recommend specific foods for an individual based on his or her genetics.

At K-State, other researchers collaborated on the project: Denis Medeiros, professor and department head of human nutrition; Yu Jiang, research associate in human nutrition; Edlin Ortiz, junior in life sciences, Liberal; and Yunong Zhang, a former research assistant in human nutrition.

The research has been presented at the 2009 Experimental Biology conference and 2009 American Society of Cell Biology Conference. The project is funded by a grant from K-State's Center of Biomedical Research Excellence.

Dingbo "Daniel" Lin | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>