Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cell division sheds light on special mechanism in egg cells

23.08.2010
In a study of egg cells using time-lapse microscopy, researchers at the University of California, San Diego School of Medicine and the Ludwig Institute for Cancer Research have discovered an unusual property of meiosis – cell division that produces reproductive cells in sexually reproducing organisms.

The discovery of an "inside out" mechanism by which egg cell chromosomes separate from each other may shed light on mistakes made in chromosome distribution that can lead to Down syndrome, high miscarriage rates in humans, and the age-related decrease in fertility in human females. Their findings are reported in the September issue of Nature Cell Biology.

Sexual reproduction relies on the merger of chromosomes present in the sperm and egg at fertilization. Formation of sperm and egg cells requires the process of meiosis, which halves the chromosome number of each parent, so that the sperm-egg merger regenerates a cell with two copies of each chromosome. The reduction of chromosome number in meiosis is accomplished through two divisions without an intervening duplication of the genome.

Both meiotic and mitotic divisions require specialized protein polymers called microtubules. These polymers are organized into a football-shaped spindle with the polymer ends embedded in a special organelle – called the centrosome – at each end of the football. Egg cells, however, are unusual in that they lack centrosomes, and instead use a spindle that is self-organized from microtubules. Egg cells, especially in humans, are prone to mistakes in dividing the chromosomes during meiosis; mistakes which result in reproductive problems in humans such as Down syndrome, infertility and miscarriages.

... more about:
»C. elegans »Cancer »Cellular »Desai »EGG »Molecular Target »UCSD

Researchers led by Arshad Desai, PhD, professor of Cellular and Molecular Medicine and investigator with the Ludwig Institute at UC San Diego, used the roundworm C. elegans, as a model to study egg cell division. Julien Dumont, a postdoctoral fellow in the Desai lab, developed time lapse microscopy methods to observe egg cell meiosis with high precision.

Prior to this study, dividing cell chromosomes were thought to move apart by pulling on the microtubule polymers and moving into the ends of the spindle, like a person pulling himself up on a rope. But the UCSD researchers discovered that, in C. elegans egg cells, chromosome move apart by being pushed in the middle – most likely caused by the growth of microtubule polymers between the chromosome halves.

"This finding suggests that egg cells use a special mechanism for meiotic chromosome separation," said Desai. "Since defects in egg cell meiosis underlie infertility in humans, it will be important for future research to address whether such a mechanism is also operating in human females."

Karen Oegema, PhD, professor at the Ludwig Institute and the UCSD Department of Cellular and Molecular Medicine was a co-contributor to the paper. This research was supported by ants from Human Frontiers Science Program, the National Institutes of Health and funding from the Ludwig Institute for Cancer Research.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: C. elegans Cancer Cellular Desai EGG Molecular Target UCSD

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>