Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cell division sheds light on special mechanism in egg cells

23.08.2010
In a study of egg cells using time-lapse microscopy, researchers at the University of California, San Diego School of Medicine and the Ludwig Institute for Cancer Research have discovered an unusual property of meiosis – cell division that produces reproductive cells in sexually reproducing organisms.

The discovery of an "inside out" mechanism by which egg cell chromosomes separate from each other may shed light on mistakes made in chromosome distribution that can lead to Down syndrome, high miscarriage rates in humans, and the age-related decrease in fertility in human females. Their findings are reported in the September issue of Nature Cell Biology.

Sexual reproduction relies on the merger of chromosomes present in the sperm and egg at fertilization. Formation of sperm and egg cells requires the process of meiosis, which halves the chromosome number of each parent, so that the sperm-egg merger regenerates a cell with two copies of each chromosome. The reduction of chromosome number in meiosis is accomplished through two divisions without an intervening duplication of the genome.

Both meiotic and mitotic divisions require specialized protein polymers called microtubules. These polymers are organized into a football-shaped spindle with the polymer ends embedded in a special organelle – called the centrosome – at each end of the football. Egg cells, however, are unusual in that they lack centrosomes, and instead use a spindle that is self-organized from microtubules. Egg cells, especially in humans, are prone to mistakes in dividing the chromosomes during meiosis; mistakes which result in reproductive problems in humans such as Down syndrome, infertility and miscarriages.

... more about:
»C. elegans »Cancer »Cellular »Desai »EGG »Molecular Target »UCSD

Researchers led by Arshad Desai, PhD, professor of Cellular and Molecular Medicine and investigator with the Ludwig Institute at UC San Diego, used the roundworm C. elegans, as a model to study egg cell division. Julien Dumont, a postdoctoral fellow in the Desai lab, developed time lapse microscopy methods to observe egg cell meiosis with high precision.

Prior to this study, dividing cell chromosomes were thought to move apart by pulling on the microtubule polymers and moving into the ends of the spindle, like a person pulling himself up on a rope. But the UCSD researchers discovered that, in C. elegans egg cells, chromosome move apart by being pushed in the middle – most likely caused by the growth of microtubule polymers between the chromosome halves.

"This finding suggests that egg cells use a special mechanism for meiotic chromosome separation," said Desai. "Since defects in egg cell meiosis underlie infertility in humans, it will be important for future research to address whether such a mechanism is also operating in human females."

Karen Oegema, PhD, professor at the Ludwig Institute and the UCSD Department of Cellular and Molecular Medicine was a co-contributor to the paper. This research was supported by ants from Human Frontiers Science Program, the National Institutes of Health and funding from the Ludwig Institute for Cancer Research.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: C. elegans Cancer Cellular Desai EGG Molecular Target UCSD

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>