Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Catalogs Black Hills Bees for Biology Research

14.08.2009
A study to inventory native species of bees in the Black Hills will help biologists determine stressors on habitat to help fully understand environmental changes in the region.

South Dakota State University researchers will inventory native species of bees in the Black Hills region starting in late 2009.

SDSU Plant Science Entomologist and Professor Paul Johnson said biologists know that at least 100 species of bees are found in the region. But there’s a possibility that perhaps 80 or more other unknown species could be found there.

“Our knowledge base right now is so poor that we know there are more species out there than have been formally reported,” Johnson said.

“Very simply we want to find out what species are there currently, what habitats they occur in, and in the case of those that are regular flower visitors and pollinate on a regular basis, we want to ascertain which flowering plants they visit or which ones they seem to prefer at different times of the year — the focus being on which species are out there.”

Knowing what species of bees are there and what plants they visit will help biologists better understand the entire Black Hills ecosystem. Johnson said at least 75 to 80 percent of the flowering plants in the Black Hills are dependent on bees or some other species of insect for pollination, or the transfer of pollen from the male flower parts to the female flower parts.

For most meadow and prairie plants, including many trees and shrubs, he added, bees are the most important pollinators. Bees are also recognized as valuable indicators of ecological health because of the niche they fill in servicing the plants in a region.

“You can use the diversity of the bees in an area as a relatively easy-to-sample proxy for the condition, the overall quality, of those habitats,” Johnson said. “If certain bees disappear, it’s an indication that something is wrong. Bumblebees, for example, are very sensitive to parasites and diseases. Native bees are particularly sensitive to pesticide use, including herbicides.”

The study looks at the Black Hills eco-region, which also includes some of the surrounding prairie and the Bear Lodge Mountains. SDSU researchers will gather voucher specimens and record detailed information about where and when they were collected. Part of the problem with existing information, Johnson said, is that it sometimes doesn’t give biologists enough information about whether a specimen came from higher elevations in the Black Hills, or from down at the edge of the prairie. That doesn’t tell much about the plant communities a species of bee is using.

“It’s the habitat associations and the flower associations that are critical for putting the whole story together and understanding the dynamics of the environmental changes in the Black Hills using the bees as proxies,” Johnson said.

A grant of nearly $50,000 from the South Dakota Department of Game, Fish and Parks is funding the three-year study.

Mandy M. Stockstad | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>