Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study builds dossier on JC polyomavirus

11.06.2013
The JC polyomavirus is clearly opportunistic. It infects half the population but lethally destroys brain tissue only in immunocompromised patients — and it may be outright sneaky, too.

Even as a new research paper allays fears that common mutant forms of the virus are the ones directly responsible for the disease's main attack, that same finding raises new questions about what the mutants are doing instead.


A JC Polyomavirus approaches a cell to bind with LSTc carbohydrates.

Credit: Ursula Neu/Tübingen University

Even if they are not the ones killing key brain cells, the mutants are up to some kind of no good, scientists suspect, because they are only found in the people who become sick with progressive multifocal leukoencephalopathy. PML sickens and usually kills one in 25 people with HIV-1 or one in 500 who receive a certain treatment for multiple sclerosis. The mutants appear plentiful in the blood and cerebral spinal fluid of sick patients, but in healthy carriers, the virus never mutates or spreads to the brain.

"The thinking in the field has been that these mutants possibly represent the pathogenic form of the virus," said Walter Atwood, a Brown University biologist and co-corresponding author on the new paper published June 11 in the journal mBio. "But there is no evidence that these things interact with the known receptors that are required for infection. This is the first report to show that, in fact, they are not infectious. But they may contribute to disease in ways we don't yet understand."

The mutant forms of the virus, the paper's authors from Brown University and University of Tübingen hypothesize, might provide a grand diversion to help the main virus evade the immune system, or they could be attacking different cells than the main virus does in an as yet undiscovered way.

Mutants not infectious

In the study, Atwood's team, led by co-first authors Melissa Maginnis of Brown and Luisa Ströh of Tübingen, looked at common mutant strains both in a series of lab experiments and through direct structural investigations using x-ray crystallography. What they determined is that the mutants are unable to bind at the virus's preferred site, a carbohydrate called LSTc, on the surface of both astrocytes and oligodendrocytes. Those two types of brain glial cells are the known targets of the virus. They produce myelin, a necessary sheathing for neurons, the message centers of the brain.

In the lab at Brown the researchers showed that the mutants are ostensibly harmless by infecting some glial cells with DNA from the virus's normal form and some with DNA from several common mutants and culturing them all for 22 days. Only the normal, or "wild-type," virus grew or spread at all.

Meanwhile the Tübingen scientists also resolved the crystal structures of three different mutant viruses and saw that even though the mutants overall had the same structure as the main virus, the sites at which they bind to LSTc all had local structural differences that either made binding impossible or much more difficult.

"It is a physical blocking," said Ströh, who is now visiting Brown from Tübingen as part of an exchange program. "Introducing one change can physically block, or at least partially block, interaction with LSTc, but the protein itself is still folded correctly."

To further rule out the chance that the mutant viruses could bind to and infect glial cells, the lab team then inserted normal and mutant polyomavirus proteins into pseudoviruses that could infect cells in culture even if they carried the mutations. Then they exposed several human brain cell types to the mutant and normal pseudoviruses. Only the pseudoviruses with normal DNA managed to infect the cells. The mutants still could not.

Mutant mystery

So what other role might the mutants play in attacking the brain? The study's authors offer two main possibilities, although there are others as well. (The researchers acknowledge that their experiments with glial cells in the lab are not exactly the same as tracking actual infection — or non-infection — in the brain).

Atwood's preferred hypothesis is that the mutants help the main form of the virus evade the patient's ailing immune system.

"It's not uncommon for viruses to accumulate mutations in their outer surfaces that alter antibody recognition," Atwood said. "These altered surfaces are attacked by the immune system. So the virus is spitting out a bunch of mutant viruses to serve as a smokescreen to the immune system as if to say, 'Attack all this garbage, but I can still go on to infect the next cell.'"

Another hypothesis, favored by Maginnis and Ströh, is that the mutants infect a different kind of cell in a way that does not require binding to LSTc.

"Perhaps they are infectious in endothelial cells," Maginnis said. "The lack of binding to LSTc might allow it to spread more freely. For example, the mutant viruses might be able to spread cell to cell in a mechanism that doesn't involve binding to receptors on the surface of cells, and perhaps this is how the virus crosses the blood-brain barrier."

Whether they are distracting and evading the immune system, slipping into other cells and sneaking through the blood-brain barrier, or something else, the mutants remain a serious concern to scientists, physicians, and patients, because JC polyomavirus remains a killer on the loose.

In addition to Maginnis, Ströh, and Atwood, other authors are Gretchen Gee, Bethany O'Hara, and Aaron Derdowski of Brown, and Thilo Stehle of Tübingen and Vanderbilt University.

The National Institute of Neurological Disorders and Stroke funded the research with grants 5P01NS065719 and F32NS064870.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>