Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of bird lice shows how evolution sometimes repeats itself

17.08.2012
Birds of a feather flock together and – according to a new analysis – so do their lice.

A study of the genetic heritage of avian feather lice indicates that their louse ancestors first colonized a particular group of birds (ducks or songbirds, for example) and then “radiated” to different habitats on those birds – to the wings or heads, for instance, where they evolved into different species. This finding surprised the researchers because wing lice from many types of birds look more similar to one another than they do to head or body lice living on the same birds.

The study appears in the journal BMC Biology. (Watch a video about the research - http://www.youtube.com/watch?v=FRTqiOL65og )

Wing lice are long and narrow and insert themselves between the feather barbs of a bird’s wings. This allows them to avoid being crushed or removed by a bird when it preens, said Kevin Johnson, a University of Illinois ornithologist with the state Natural History Survey. Johnson conducted the new analysis with Vincent Smith, of the Natural History Museum in London, and Illinois graduate student Scott Shreve.

“If you were just guessing at their ancestry based on external traits, you would think the wing lice on different birds were more closely related to one another than they were to head or body lice on the same bird,” Johnson said. “But that’s just not the case.”

Each type of louse is adapted to life on a particular part of the body. Head lice are rounder than wing lice, for example, and have triangular, grooved heads. The groove helps them cling to a single feather barb so their bird host can’t scratch them off.

Body lice are plump and will burrow into the downy feathers or drop from feather to feather to avoid being preened. And the lice known as generalists, which range all over the bird, have their own method of escaping preening: They run.

“The similarities between the lice living in specific habitats on the bodies of birds are really striking,” Johnson said. “But it appears that those similarities are the result of what we call ‘convergent evolution’: The lice independently arrived at the same, or similar, solutions to common ecological problems. This occurred only after they had colonized a particular type of bird.”

In the new analysis, Johnson and his colleagues drew up two family trees of feather lice. The first tree grouped the lice according to physical traits; the second mapped their genetic relationships.

The two trees looked significantly different from one another, Johnson said. The genetic tree showed that different types of feather lice living on the same type of bird were often closely related, whereas lice that had evolved to survive on specific bird parts, such as the wing, were only distantly related across bird groups, he said.

The history of feather lice turns out to be a very robust example of convergent evolution, Johnson said.

“Here we see how evolution repeats itself on different bird types,” he said. “The lice are converging on similar solutions to the problem of survival in different microhabitats on the bird.”

The Illinois Natural History Survey is a division of the Prairie Research Institute.

Editor’s notes: To reach Kevin Johnson, call 217-244-9267;
email kpjohnso@illinois.edu.
The paper, “Repeated Adaptive Divergence of Microhabitat Specialization in Avian Feather Lice,” is available online: http://www.biomedcentral.com/1741-7007/10/52/abstract

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>