Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Bees Links Gene Regulatory Networks in the Brain to Behavior

27.09.2011
A new study reveals that distinct networks of genes in the honey bee brain contribute to specific behaviors, such as foraging or aggression, researchers report.

The study, in the Proceedings of the National Academy of Sciences, is the first to show that common, naturally occurring behaviors are under the influence of discrete regulatory networks in the brain. It confirms, scientists say, what years of research into the brain and behavior seemed to indicate: There is a close relationship between changes in gene expression – which genes are actively transcribed into other molecules to perform specific tasks in the cell – and behavior.

“We found that there is a high degree of modularity in the regulation of genes and behavior, with distinct behavioral states represented by distinct gene network configurations,” said University of Illinois entomology and neuroscience professor Gene Robinson, who led the study. Robinson is the director of the Institute for Genomic Biology at Illinois.

The study made use of the BeeSpace Project, which includes an extensive digitized record of gene expression data from bee brains collected under various conditions. Curated by Illinois medical information science professor Bruce Schatz, BeeSpace is a catalog of genes that turn on or off in the bee brain in response to social cues, environmental changes or as a result of hereditary factors. By analyzing gene expression and behavioral data from dozens of studies (which were performed under the auspices of the BeeSpace Project), the researchers were able to get a broad view of the molecular changes in the bee brain that contribute to behavior.

The team focused their analysis on lists of genes implicated in at least one of three categories of behavior: foraging, such as scouting for flowers or navigating to and from the hive; maturation, the process by which an adult honey bee graduates from being a nanny to working as a forager as it grows older; and aggression, or hive defense.

The researchers then used a systems approach, led by Illinois chemical and biomolecular engineering professor Nathan Price (now at the Institute for Systems Biology in Seattle), to create a computer model of a gene regulatory network that could predict the differences in gene expression seen in the experimental studies.

The model found a “mosaic” pattern of behavior-related gene expression in the brain. It also predicted that a few transcription factors – genes that regulate other genes – regulate gene expression in all three behavioral categories. The researchers call these “global regulators.” Other transcription factors appeared to regulate expression in only one category, such as foraging, but not aggression or maturity, for example. Only four transcription factors were predicted to act like global regulators, while sets of about 15-25 transcription factors were behavior-specific.

Researchers have long worried that the regulation of brain gene expression is too complex to fathom, because so many factors can act together to regulate behavior.

“But now we see that direct, linear relationships between transcription factors and downstream genes can predict a surprisingly large amount of gene expression,” Price said. “This gives scientists hope that it will be possible to completely understand the regulation of brain gene expression in the future.”

Funding for this study was provided by the National Science Foundation, the National Institutes of Health, the National Cancer Institute, the U.S. Department of Defense, the Grand Duchy of Luxembourg and the Roy J. Carver Charitable Trust.

Editor’s notes: To reach Gene Robinson,
call 217- 265-0309; email generobi@illinois.edu.
The paper, “Behavior-Specific Changes in Transcriptional Modules Lead to Distinct and Predictable Neurogenomic States,” is available online and from the U. of I News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>