Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Bees Links Gene Regulatory Networks in the Brain to Behavior

27.09.2011
A new study reveals that distinct networks of genes in the honey bee brain contribute to specific behaviors, such as foraging or aggression, researchers report.

The study, in the Proceedings of the National Academy of Sciences, is the first to show that common, naturally occurring behaviors are under the influence of discrete regulatory networks in the brain. It confirms, scientists say, what years of research into the brain and behavior seemed to indicate: There is a close relationship between changes in gene expression – which genes are actively transcribed into other molecules to perform specific tasks in the cell – and behavior.

“We found that there is a high degree of modularity in the regulation of genes and behavior, with distinct behavioral states represented by distinct gene network configurations,” said University of Illinois entomology and neuroscience professor Gene Robinson, who led the study. Robinson is the director of the Institute for Genomic Biology at Illinois.

The study made use of the BeeSpace Project, which includes an extensive digitized record of gene expression data from bee brains collected under various conditions. Curated by Illinois medical information science professor Bruce Schatz, BeeSpace is a catalog of genes that turn on or off in the bee brain in response to social cues, environmental changes or as a result of hereditary factors. By analyzing gene expression and behavioral data from dozens of studies (which were performed under the auspices of the BeeSpace Project), the researchers were able to get a broad view of the molecular changes in the bee brain that contribute to behavior.

The team focused their analysis on lists of genes implicated in at least one of three categories of behavior: foraging, such as scouting for flowers or navigating to and from the hive; maturation, the process by which an adult honey bee graduates from being a nanny to working as a forager as it grows older; and aggression, or hive defense.

The researchers then used a systems approach, led by Illinois chemical and biomolecular engineering professor Nathan Price (now at the Institute for Systems Biology in Seattle), to create a computer model of a gene regulatory network that could predict the differences in gene expression seen in the experimental studies.

The model found a “mosaic” pattern of behavior-related gene expression in the brain. It also predicted that a few transcription factors – genes that regulate other genes – regulate gene expression in all three behavioral categories. The researchers call these “global regulators.” Other transcription factors appeared to regulate expression in only one category, such as foraging, but not aggression or maturity, for example. Only four transcription factors were predicted to act like global regulators, while sets of about 15-25 transcription factors were behavior-specific.

Researchers have long worried that the regulation of brain gene expression is too complex to fathom, because so many factors can act together to regulate behavior.

“But now we see that direct, linear relationships between transcription factors and downstream genes can predict a surprisingly large amount of gene expression,” Price said. “This gives scientists hope that it will be possible to completely understand the regulation of brain gene expression in the future.”

Funding for this study was provided by the National Science Foundation, the National Institutes of Health, the National Cancer Institute, the U.S. Department of Defense, the Grand Duchy of Luxembourg and the Roy J. Carver Charitable Trust.

Editor’s notes: To reach Gene Robinson,
call 217- 265-0309; email generobi@illinois.edu.
The paper, “Behavior-Specific Changes in Transcriptional Modules Lead to Distinct and Predictable Neurogenomic States,” is available online and from the U. of I News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>