Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antifreeze proteins in Antarctic fishes prevent freezing … and melting

23.09.2014

Antarctic fishes that manufacture their own “antifreeze” proteins to survive in the icy Southern Ocean also suffer an unfortunate side effect, researchers report: The protein-bound ice crystals that accumulate inside their bodies resist melting even when temperatures warm. The finding is reported in the Proceedings of the National Academy of Sciences.

“We discovered what appears to be an undesirable consequence of the evolution of antifreeze proteins in Antarctic notothenioid fishes,” said University of Oregon doctoral student Paul Cziko, who led the research with University of Illinois animal biology professors Chi-Hing “Christina” Cheng and Arthur DeVries. “What we found is that the antifreeze proteins also stop internal ice crystals from melting. That is, they are anti-melt proteins as well.”

Five families of notothenioid fishes inhabit the Southern Ocean, the frigid sea that encircles Antarctica. Their ability to live in the icy seawater is so extraordinary that they make up more than 90 percent of the fish biomass of the region.

DeVries discovered antifreeze proteins in Antarctic notothenioid fishes in the late 1960s, and was the first to describe how the proteins bind to ice crystals in the blood to prevent the fishes from freezing.

In the new study, the team investigated whether the antifreeze protein-bound ice crystals inside these fishes would melt as expected when temperatures warmed. When researchers warmed the fishes to temperatures above the expected melting point, some internal ice crystals failed to melt. Ice that doesn’t melt at its normal melting point is referred to as “superheated.”

The researchers also found ice crystals in wild notothenioid fishes swimming in relatively warmer Antarctic summer waters, at temperatures where they would be expected to be free of ice. By testing the antifreeze proteins in the lab, the team found that these proteins also were responsible for preventing the internal ice crystals from melting.

“Our discovery may be the first example of ice superheating in nature,” Cheng said.

A diver himself, Cziko worked with other divers to place and maintain a temperature-logging device in McMurdo Sound, Antarctica, one of the coldest marine environments on the planet. The device recorded ocean temperatures there for 11 years, a substantial portion of notothenioids’ lifespan. Not once in that time did temperatures increase enough to overcome the antifreeze proteins’ anti-melting effect to completely rid the fishes of their internal ice, the researchers report.

The researchers suspect that the accumulation of ice inside the fishes could have adverse physiological consequences, but none have yet been discovered.

If the fishes are destined to carry ice crystals around all their lives, Cheng said, it is conceivable that ice particles could obstruct small capillaries or trigger undesired inflammatory responses. Cziko likens the potential threat to dangers posed by asbestos in the lungs or blood clots in the brain.

“Since much of the ice accumulates in the fishes’ spleens, we think there may be a mechanism to clear the ice from the circulation,” he said.

“This is just one more piece in the puzzle of how notothenioids came to dominate the ocean around Antarctica,” he said. “It also tells us something about evolution. That is, adaptation is a story of trade-offs and compromise. Every good evolutionary innovation probably comes with some bad, unintended effects.”

The long-term temperature record of McMurdo Sound produced in the study also “will prove to be of great importance and utility to the polar research community that is addressing organismal responses to climate change in this coldest of all marine environments,” Cheng said.

Clive W. Evans, a professor of molecular genetics and development at the University of Auckland in New Zealand, also is a co-author of the new paper.

The National Science Foundation supported this research.

Editor’s notes:

To reach Christina Cheng, call 217-333-2832; email c-cheng@illinois.edu

To reach Paul Cziko, call 217-819-7976; email pcziko@uoregon.edu       

The paper, “Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming,” is available online or from the U. of I. News Bureau.  

Links to additional materials:

Paul Cziko’s website with photos of fishes and Antarctic research: www.paulcziko.net

Background slideshow with narration featuring Dr. Christina Cheng: http://tinyurl.com/n4se9q2 or direct link.

Diana Yates | University of Illinois

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>