Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study analyzes role of PARP enzyme in eukaryotes

OSU's Lamb leverages supercomputer to study protein's evolution

An Ohio State University molecular biologist leveraged a supercomputer to help better define the family tree of a group of enzymes that have been implicated in a wide range of human diseases and are important targets for anti-cancer therapies.

Along with several OSU colleagues, Rebecca S. Lamb, Ph.D., an assistant professor of Molecular Genetics, recently analyzed the evolutionary history of the poly(ADP-ribose)polymerase (PARP) superfamily.

These proteins are found in eukaryotes, a wide range of organisms – animals, plants, molds, fungi, algae and protozoa –whose cells contain complex structures enclosed within membranes. While PARP proteins can be found with any of these “supergroups,” they have been most extensively studied in mammals.

“In these organisms, PARPs have key functions in DNA repair, genome integrity and epigenetic regulation,” said Lamb. “More recently it has been found that proteins within the PARP superfamily have a broader range of functions that initially predicted.”

The researchers used computers to identify 236 PARP proteins from 77 species across five of the six supergroups. Lamb then accessed the Glen Cluster at the Ohio Supercomputer Center (OSC) to perform extensive phylogenetic analyses of the identified PARP regions.

“This is computationally intensive work that would have been impossible without the computer resources provided at OSC,” Lamb said. “In particular, the ability to try a variety of tools that require a great deal of CPU and memory capabilities was essential for success.”

Amongst other tools, she employed the PhyML3.0 software package, which fit a statistical model to the aligned sequence data and provided estimates for the model’s parameters.

“Dr. Lamb’s project is an excellent example of a scientist running a very domain-specific software package on our state-of-the-art systems,” said Ashok Krishnamurthy, Ph.D., interim co-executive director of OSC. “While the center maintains a large collection of licensed and open-source software, there are occasions where very specialized or customized applications are required. Our staff mdembers are very good at working with researchers to modify these codes to get them installed, running and delivering results.”

Access to powerful OSC systems allowed the researchers to experiment with a wide variety of options and parameters, in order to achieve the best results, Lamb noted.

“PARPs are found in all eukaryotic supergroups for which sequence is available, but some individual lineages within supergroups have independently lost these genes,” said Lamb. “The PARP superfamily can be subdivided into six branches or ‘clades.’ Two of these clades were likely found in the last common eukaryotic ancestor. In addition, we have identified PARPs in organisms in which they have not previously been described.”

Three main conclusions were drawn from the study. First, the broad distribution and pattern of representation of PARP genes indicated to the researchers that the ancestor of all existing eukaryotes encoded proteins of this type. Second, the ancestral PARP proteins had different functions and activities. One of these proteins likely functioned in DNA damage response. Third, the diversity of the PARP superfamily is larger than previously documented, suggesting as more eukaryotic genomes become available, this gene family will grow in both number and type.

The study, “Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes,” was authored by Lamb and OSU colleagues Matteo Citarelli and Sachin Teotia and appeared in a recent issue of the journal BMC Evolutionary Biology. The work was supported by a grant from the Ohio Plant Biotechnology Consortium and by funds from the Ohio State University.

The Ohio Supercomputer Center (OSC) is a catalytic partner of Ohio universities and industries that provides reliable advanced computational infrastructure and services for academic and industry research. OSC is funded by the Ohio Board of Regents to provide advanced computation, research and educational resources to a diverse statewide community, including higher education, K-12, and industry. More information is available at

Mr. Jamie Abel | EurekAlert!
Further information:

Further reports about: ADP-ribose DNA OSC Supercomputer advanced computation evolutionary history

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>