Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Amplifies Understanding of Hearing in Baleen Whales

18.04.2012
For decades, scientists have known that dolphins and other toothed whales have specialized fats associated with their jaws, which efficiently convey sound waves from the ocean to their ears. But until now, the hearing systems of their toothless grazing cousins, baleen whales, remained a mystery.

Unlike toothed whales, baleen whales do not have enlarged canals in their jaws where specialized fats sit. While toothed whales use echolocation to find prey, baleen whales generally graze on zooplankton, and so some scientists have speculated that baleen whales may not need such a sophisticated auditory system.

But a new study by scientists at Woods Hole Oceanographic Institution (WHOI), published April 10, 2012, in The Anatomical Record, has shown that some baleen whales also have fats leading to their ears.

The scientists propose that toothed whales may not be the only whales that use fats to transmit sound in water, as previously believed, and the fats in both types of whales may share a common evolutionary origin.

Little progress had been made on the auditory anatomy of baleen whales because specimens to study are hard to get. Unlike many toothed whales, they are large, not kept in captivity, rarely strand on beaches, and decompose rapidly when they do.

For the new study, lead author Maya Yamato, a graduate student in the MIT/WHOI Joint Program in Oceanography, received seven heads of minke whales that stranded and died, mostly on beaches on Cape Cod. She collaborated with the International Fund for Animal Welfare’s (IFAW) Marine Mammal Rescue and Research unit in Yarmouth Port, Mass.

The whale heads were scanned using computerized tomography (CT) and magnetic resonance imaging (MRI) at the Computerized Scanning and Imaging (CSI) lab at WHOI and MRI facility at Massachusetts Ear and Eye Infirmary in Boston. Using these biomedical techniques, the researchers generated 3-D visualizations of the whales’ internal anatomy, with both bones and soft tissue intact and in their undisturbed natural positions, providing “an unprecedented view of the internal anatomy of these animals,” the scientists wrote.

Then the whale heads were dissected in the necropsy facility at the Marine Mammal Center at WHOI. Together, the studies showed that all the minke whales had “a large, well-formed fat body” connecting to the ears, providing a potential transmission pathway guiding sound from the environment to their inner ears.

“This is the first successful study of intact baleen whale head anatomy with these advanced imaging techniques,” said WHOI Senior Scientist Darlene Ketten, director of the CSI lab at WHOI and co-author on the paper. “It really is an important addition to our understanding of large whale head and auditory systems.”

Also collaborating on the study were Julie Arruda and Scott Cramer at the CSI and Kathleen Moore of IFAW.

This research was funded by a National Science Foundation Graduate Research Fellowship, a WHOI Ocean Life Institute Graduate Fellowship, the Joint Industry Program, the Office of Naval Research, and the U.S. Navy.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit www.whoi.edu.
Originally published: April 20, 2012

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>