Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Amplifies Understanding of Hearing in Baleen Whales

18.04.2012
For decades, scientists have known that dolphins and other toothed whales have specialized fats associated with their jaws, which efficiently convey sound waves from the ocean to their ears. But until now, the hearing systems of their toothless grazing cousins, baleen whales, remained a mystery.

Unlike toothed whales, baleen whales do not have enlarged canals in their jaws where specialized fats sit. While toothed whales use echolocation to find prey, baleen whales generally graze on zooplankton, and so some scientists have speculated that baleen whales may not need such a sophisticated auditory system.

But a new study by scientists at Woods Hole Oceanographic Institution (WHOI), published April 10, 2012, in The Anatomical Record, has shown that some baleen whales also have fats leading to their ears.

The scientists propose that toothed whales may not be the only whales that use fats to transmit sound in water, as previously believed, and the fats in both types of whales may share a common evolutionary origin.

Little progress had been made on the auditory anatomy of baleen whales because specimens to study are hard to get. Unlike many toothed whales, they are large, not kept in captivity, rarely strand on beaches, and decompose rapidly when they do.

For the new study, lead author Maya Yamato, a graduate student in the MIT/WHOI Joint Program in Oceanography, received seven heads of minke whales that stranded and died, mostly on beaches on Cape Cod. She collaborated with the International Fund for Animal Welfare’s (IFAW) Marine Mammal Rescue and Research unit in Yarmouth Port, Mass.

The whale heads were scanned using computerized tomography (CT) and magnetic resonance imaging (MRI) at the Computerized Scanning and Imaging (CSI) lab at WHOI and MRI facility at Massachusetts Ear and Eye Infirmary in Boston. Using these biomedical techniques, the researchers generated 3-D visualizations of the whales’ internal anatomy, with both bones and soft tissue intact and in their undisturbed natural positions, providing “an unprecedented view of the internal anatomy of these animals,” the scientists wrote.

Then the whale heads were dissected in the necropsy facility at the Marine Mammal Center at WHOI. Together, the studies showed that all the minke whales had “a large, well-formed fat body” connecting to the ears, providing a potential transmission pathway guiding sound from the environment to their inner ears.

“This is the first successful study of intact baleen whale head anatomy with these advanced imaging techniques,” said WHOI Senior Scientist Darlene Ketten, director of the CSI lab at WHOI and co-author on the paper. “It really is an important addition to our understanding of large whale head and auditory systems.”

Also collaborating on the study were Julie Arruda and Scott Cramer at the CSI and Kathleen Moore of IFAW.

This research was funded by a National Science Foundation Graduate Research Fellowship, a WHOI Ocean Life Institute Graduate Fellowship, the Joint Industry Program, the Office of Naval Research, and the U.S. Navy.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit www.whoi.edu.
Originally published: April 20, 2012

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>