Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies of marine animals aim to help prevent rejection of transplanted organs

15.04.2011
Studies of the small sea squirt may ultimately help solve the problem of rejection of organ and bone marrow transplants in humans, according to scientists at UC Santa Barbara.

An average of 20 registered patients die every day waiting for transplants, due to the shortage of matching donor organs. More than 110,000 people are currently waiting for organ transplants in the U.S. alone. Currently, only one in 20,000 donors are a match for a patient waiting for a transplant.

These grim statistics drive scientists like Anthony W. De Tomaso, assistant professor of biology at UCSB, to delve into the cellular biology of immune responses. His studies of the sea squirt shed light on the complicated issue of organ rejection. The latest results are published online today in the journal Immunity.

De Tomaso hopes to understand how it might be possible to "tune" the body's immune response in order to dial down the rejection of a donated organ. Studying cellular responses in simple organisms may also eventually help with autoimmune diseases –– those in which the body mistakenly attacks itself.

"Right now, when you get a transplant, you're usually on immunosuppressives your whole life," said De Tomaso. "And that's like sort of kicking your immune system in the teeth. What if we could raise the threshold of when you would respond, instead of just shutting the whole system off?"

De Tomaso and his research team study Botryllus schlosseri, a type of sea squirt. This small organism –– known as a tunicate because of its covering, or "tunic" –– is a modern day descendant of the vertebrate ancestor, the group to which we belong. Tunicates begin life as swimming tadpoles with primitive backbones, nerves, and musculature that are similar to all vertebrates, but soon transform into stationary creatures. Tunicates latch onto intertidal surfaces and look like flat flowers –– with each "petal" being a separate, but genetically identical, body.

De Tomaso focuses on what happens when one sea squirt lands next to another. In this case, cells in the sea squirt's fingerlike edges, or "ampullae," recognize the neighboring sea squirt as "self" or "non-self." When the other sea squirt is related, then the two colonies fuse; otherwise, they reject each other. De Tomaso was involved in identifying the gene controlling the choice between fusion and rejection in the sea squirt when he was a postdoctoral fellow at Stanford University.

In his current research, De Tomaso studies how the signals on the surface of the sea squirt's cells get translated inside the circuitry of the cell, where the final decision about acceptance or rejection is made. "In the case of Botryllus, what we found is that we have the same kind of integration that goes on in humans, but instead of having a multiple, very complex set of inputs coming in, we only have two," said DeTomaso. "We have also found that we can manipulate each one independently, so we know that somehow they are put together and the two inputs are integrated, and a decision is made about how to respond."

De Tomaso explained that he decided to work on Botryllus because it has a unique way to answer a very complicated question. He hopes to understand the process of rejection or acceptance. "If we could manipulate that process," said Tomaso, "then we could basically teach the immune system to simply ignore certain things. We could say, 'Just don't respond to this. We're going to transfer this bone marrow, just don't kill this bone marrow.' Bone marrow could get in and start making new blood, and it would be fine. To me, that's the most exciting thing long-term for the work."

Tanya R. McKitrick is the first author on the paper. She works in De Tomaso's lab at UCSB and also at Stanford University. Other co-authors are Christina C. Muscat, Stanford University; James D. Pierce, UCSB; and Deepta Bhattacharya, Washington University School of Medicine.

Note to Editors: Anthony De Tomaso can be reached at (805) 893-7276, or by e-mail at detomaso@lifesci.ucsb.edu. Downloadable photos are available at http://www.ia.ucsb.edu/pa/display.aspx?pkey=2463#description.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>