Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Coax Yeast Cells to Add Vitamins to Bread

27.10.2011
Any way you slice it, bread that contains critical nutrients could help combat severe malnutrition in impoverished regions.

That is the goal of a group of Johns Hopkins University undergraduate students who are using synthetic biology to enhance common yeast so that it yields beta carotene, the orange substance that gives carrots their color. When it’s eaten, beta-carotene turns into vitamin A.

The students’ project is the university’s entry in iGEM, the International Genetically Engineered Machine competition. After a regional judging earlier this month, the undergraduates’ project, called VitaYeast, has advanced to the iGEM finals, scheduled for Nov. 5-7 at the Massachusetts Institute of Technology. In the annual iGEM contest, students from around the world present projects based on synthetic biology, a burgeoning field in which researchers manipulate small bits of DNA and other biological material to make cells carry out new tasks.

The Johns Hopkins participants say that no matter what happens at the iGEM finals, they will continue to tout their enhanced bread as a relatively simple way to help hundreds of thousands of people who are suffering from malnutrition.

Team member Arjun Khakhar, a junior biomedical engineering major, grew up in Bombay, India, where he saw widespread poverty and malnutrition. “The major problem in developing countries right now is not that people are hungry and starving because they don’t have enough food,” he said. “What people don’t have now is the [right type of] food that they need to survive. Vital nutrients like vitamins are just missing from their diets, because they can’t afford fruits and vegetables. That’s what we wanted to provide through VitaYeast.”

Producing a new food to save malnourished people around the globe may sound like an audacious goal for a group of 15 to 20 students who haven’t yet picked up their college diplomas. But Arjun doesn’t think so. “How do I get the idea in my mind that I want to change the world?” he said. “I would ask, How can you not have the idea that you want to change the world?”

To curb global malnutrition, Arjun and his teammates envisioned an enhanced starter dough that could be shared easily and cheaply among large groups of impoverished people. The bread baked from this dough could avert health problems that occur when vitamins and other nutrients are missing from their diets. Such health problems can be serious. The World Health Organization has described vitamin A deficiency as the leading cause of preventable blindness in children.

Yeast, which helps make bread rise, does not normally produce vitamins. To make this happen, the students, representing a variety of science majors, had to genetically tweak the single-cell microbes. The team members figured out how to add to yeast cells certain DNA sequences that triggered a series of biochemical reactions that produced beta carotene. They presented that development at the iGEM regional contest and are continuing to work on yeast that also produces Vitamin C, another crucial nutrient needed in impoverished areas.

As they worked on the VitaYeast project, the students were advised by Johns Hopkins faculty members, including Jef Boeke, a leading yeast expert who is a professor of molecular biology and genetics at the School of Medicine. “One of the great things about iGEM teams, which are mostly made up of undergraduates, is that those students, frankly, will not believe that something is impossible,” Boeke said. “If you tell them that something is impossible, they will go off and do it. I find that to be very exciting.”

Working in lab space provided by Boeke and other faculty members, the iGEM students solved the science challenges and produced samples of their enhanced dough. But would VitaYeast yield bread that looks and smells good enough to eat? As all good cooks know, the proof is in the pudding -- or, in this case, the bread basket. To find out, the students purchased a bread-making machine, found a simple recipe online and turned their lab into a makeshift kitchen. “We wanted to simulate the process that a regular person might go through to bake bread,” said team member Steffi Liu, a junior biomedical engineering major from Edison, N.J. “The only thing that’s different in the recipe is that we substituted our vitamin A yeast for the normal dry packaged yeast.”

The resulting bread, she said, “looks exactly the same as normal bread. Definitely the same smell! The lab smelled amazing after we baked the bread. Everybody wanted a bite of it. But obviously we can’t do that.”

Because the lab bread contains a genetically engineered ingredient that has not undergone safety testing or received approval from government regulators, the students are not permitted to eat it. But they are encouraged by the tempting aroma and traditional breadlike texture and appearance.

In recent years, some genetically engineered foods have been rejected by malnourished people merely because they did not look, smell or taste like the familiar food staples. The Johns Hopkins students are banking on greater success, partly because they are thinking small. “VitaYeast is a tiny component – it gets killed in the bread,” said Noah Young, a senior biomedical engineering major from Irvine, Calif. “We’re not genetically modifying the wheat. We’re not genetically modifying the flour or the water. We’re genetically modifying something like 1 percent of the bread recipe. When you bake VitaYeast bread and you look at it, it looks like normal bread.”

As part of the project, team member Ashan Veerakumar, a senior neuroscience major from Toronto, will survey Baltimore area residents about whether they would eat genetically modified food, particularly if it could improve their health. “The thing we’re trying to find out here,” Ashan said, “is whether our project is something the public will accept.”

He and some of the other team members are also looking for outside funding to continue pushing the VitaYeast project forward. Yet before VitaYeast bread can make its way to malnourished people, it must overcome many hurdles, including animal testing and rigorous regulatory reviews.

Still, faculty adviser Boeke is not betting against his student scientists. “Could this notion of releasing a genetically modified organism in a Third World country ever happen?” he asked. “Personally, I think the answer is yes.” Some of the iGEM students, Boeke said, “were ready to rush off and do it right away, and we had to restrain their enthusiasm.” Another faculty member, who is a bioethicist, was called in to urge the students to be more patient in pressing toward their goal. “She’s helped the students understand what the steps are needed to get to that point,” Boeke said. “That will certainly be a multiyear process, at best. But I think it could happen.”

Video interviews and color digital images of the student inventors are available; contact Phil Sneiderman.

Related link:
VitaYeast Web site: http://2011.igem.org/Team:Johns_Hopkins

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu
http://2011.igem.org/Team:Johns_Hopkins

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>