Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of world's largest single cell is reflected at the molecular level

30.01.2015

Daniel Chitwood, Ph.D., assistant member, and his research group at the Donald Danforth Plant Science Center's in St. Louis, in collaboration with the laboratory of Neelima Sinha, Ph.D., at the University of California, Davis, are using the world's largest single-celled organism, an aquatic alga called Caulerpa taxifolia, to study the nature of structure and form in plants. They have recently reported the results of their work in the online journal, PLOS Genetics.

"Caulerpa is a unique organism," said Chitwood. "It's a member of the green algae, which are plants. Remarkably, it's a single cell that can grow to a length of six to twelve inches. It independently evolved a form that resembles the organs of land plants. A stolon runs along the surface that the cell is growing on and from the stolon arise leaf-like fronds, and root-like holdfasts, which anchor the cell and absorb phosphorous from the substrate. All of these structures are just one cell."


This is the frond apex of Caulerpa taxifolia, a single celled organism, producing leaf-like pinnules. Without multicellularity, Caulerpa independently evolved a structure and form similar to land plants.

Credit: Donald Danforth Plant Science Center

"For many years, I've been interested in structure and form in plants, especially in tomato, which is the land plant that I've studied most," Chitwood continued. "As you might imagine, finding out what determines structure and form in a complex tomato plant is a challenging goal. It's critical to know how plants grow and develop to provide more tools to improve them and ultimately to make food production more reliable. Multicellularity is an important prerequisite that enables complex architectures in crops. Yet Caulerpa is a plant, too, and independently evolved a land plant-like body plan, but without multicellularity and as a single cell. How does that happen?"

Chitwood and his group reasoned that the structure of Caulerpa might be reflected in the RNA's present in various parts of the cell. (RNA's are the molecular products found when genes are expressed or "turned on.") For example, the frond part of the cell might show different RNA's from the holdfast part of the cell. When performed on Caulerpa, this type of analysis would also provide insights into the distributions of RNA's within single cells, a feat normally difficult to achieve because cells in multicellular organisms are so small.

"The result turned out to be even more interesting than we'd hoped," said Chitwood. "Not only do different parts of the Caulerpa cell show distinctly different RNA's, but there is also some correlation between RNA's that are expressed together within different parts of the Caulerpa cell with those expressed together in the multicellular organs of tomato. Even though the lineage that Caulerpa belongs to probably separated from that giving rise to land plants more than 500 million years ago, in many ways Caulerpa displays patterns of RNA accumulation shared with land plants today."

"Our work on Caulerpa has given me and my team a whole new way of thinking about plant structure and development," Chitwood continued enthusiastically. "It's clear that the basic form we associate with land plants can arise with and without multicellularity. In fact, higher plant cells are connected to each other by means of channels called plasmodesmata, and it has been argued that multicellular land plants exhibit properties similar to single-celled organisms like Caulerpa.

What if we could really think of higher plants, like tomato, as one cell instead of multitudes? This idea of thinking of multicellular land plants, like tomato, and giant single-celled algae, like Caulerpa, similarly is supported by our results that demonstrate a shared pattern of RNA accumulation. Frankly, our results have caused us to think about plant structure from an entirely different perspective, which is the most important outcome from this research."

About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research aims to feed the hungry and improve human health, preserve and renew the environment and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants and contract revenue from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, U.S. Department of Agriculture, U.S. Agency for International Development, the Bill & Melinda Gates and Howard G. Buffett Foundations.

To keep up to date with Danforth Center's current operations and areas of research, please visit, http://www.danforthcenter.org, featuring information on Center scientists, news, and the "Roots & Shoots" blog. Follow us on Twitter at @DanforthCenter.

Media Contact

Melanie Bernds
mbernds@danforthcenter.org
314-587-1647

http://www.danforthcenter.org 

Melanie Bernds | EurekAlert!

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>