Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of world's largest single cell is reflected at the molecular level

30.01.2015

Daniel Chitwood, Ph.D., assistant member, and his research group at the Donald Danforth Plant Science Center's in St. Louis, in collaboration with the laboratory of Neelima Sinha, Ph.D., at the University of California, Davis, are using the world's largest single-celled organism, an aquatic alga called Caulerpa taxifolia, to study the nature of structure and form in plants. They have recently reported the results of their work in the online journal, PLOS Genetics.

"Caulerpa is a unique organism," said Chitwood. "It's a member of the green algae, which are plants. Remarkably, it's a single cell that can grow to a length of six to twelve inches. It independently evolved a form that resembles the organs of land plants. A stolon runs along the surface that the cell is growing on and from the stolon arise leaf-like fronds, and root-like holdfasts, which anchor the cell and absorb phosphorous from the substrate. All of these structures are just one cell."


This is the frond apex of Caulerpa taxifolia, a single celled organism, producing leaf-like pinnules. Without multicellularity, Caulerpa independently evolved a structure and form similar to land plants.

Credit: Donald Danforth Plant Science Center

"For many years, I've been interested in structure and form in plants, especially in tomato, which is the land plant that I've studied most," Chitwood continued. "As you might imagine, finding out what determines structure and form in a complex tomato plant is a challenging goal. It's critical to know how plants grow and develop to provide more tools to improve them and ultimately to make food production more reliable. Multicellularity is an important prerequisite that enables complex architectures in crops. Yet Caulerpa is a plant, too, and independently evolved a land plant-like body plan, but without multicellularity and as a single cell. How does that happen?"

Chitwood and his group reasoned that the structure of Caulerpa might be reflected in the RNA's present in various parts of the cell. (RNA's are the molecular products found when genes are expressed or "turned on.") For example, the frond part of the cell might show different RNA's from the holdfast part of the cell. When performed on Caulerpa, this type of analysis would also provide insights into the distributions of RNA's within single cells, a feat normally difficult to achieve because cells in multicellular organisms are so small.

"The result turned out to be even more interesting than we'd hoped," said Chitwood. "Not only do different parts of the Caulerpa cell show distinctly different RNA's, but there is also some correlation between RNA's that are expressed together within different parts of the Caulerpa cell with those expressed together in the multicellular organs of tomato. Even though the lineage that Caulerpa belongs to probably separated from that giving rise to land plants more than 500 million years ago, in many ways Caulerpa displays patterns of RNA accumulation shared with land plants today."

"Our work on Caulerpa has given me and my team a whole new way of thinking about plant structure and development," Chitwood continued enthusiastically. "It's clear that the basic form we associate with land plants can arise with and without multicellularity. In fact, higher plant cells are connected to each other by means of channels called plasmodesmata, and it has been argued that multicellular land plants exhibit properties similar to single-celled organisms like Caulerpa.

What if we could really think of higher plants, like tomato, as one cell instead of multitudes? This idea of thinking of multicellular land plants, like tomato, and giant single-celled algae, like Caulerpa, similarly is supported by our results that demonstrate a shared pattern of RNA accumulation. Frankly, our results have caused us to think about plant structure from an entirely different perspective, which is the most important outcome from this research."

About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research aims to feed the hungry and improve human health, preserve and renew the environment and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants and contract revenue from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, U.S. Department of Agriculture, U.S. Agency for International Development, the Bill & Melinda Gates and Howard G. Buffett Foundations.

To keep up to date with Danforth Center's current operations and areas of research, please visit, http://www.danforthcenter.org, featuring information on Center scientists, news, and the "Roots & Shoots" blog. Follow us on Twitter at @DanforthCenter.

Media Contact

Melanie Bernds
mbernds@danforthcenter.org
314-587-1647

http://www.danforthcenter.org 

Melanie Bernds | EurekAlert!

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>