Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of world's largest single cell is reflected at the molecular level

30.01.2015

Daniel Chitwood, Ph.D., assistant member, and his research group at the Donald Danforth Plant Science Center's in St. Louis, in collaboration with the laboratory of Neelima Sinha, Ph.D., at the University of California, Davis, are using the world's largest single-celled organism, an aquatic alga called Caulerpa taxifolia, to study the nature of structure and form in plants. They have recently reported the results of their work in the online journal, PLOS Genetics.

"Caulerpa is a unique organism," said Chitwood. "It's a member of the green algae, which are plants. Remarkably, it's a single cell that can grow to a length of six to twelve inches. It independently evolved a form that resembles the organs of land plants. A stolon runs along the surface that the cell is growing on and from the stolon arise leaf-like fronds, and root-like holdfasts, which anchor the cell and absorb phosphorous from the substrate. All of these structures are just one cell."


This is the frond apex of Caulerpa taxifolia, a single celled organism, producing leaf-like pinnules. Without multicellularity, Caulerpa independently evolved a structure and form similar to land plants.

Credit: Donald Danforth Plant Science Center

"For many years, I've been interested in structure and form in plants, especially in tomato, which is the land plant that I've studied most," Chitwood continued. "As you might imagine, finding out what determines structure and form in a complex tomato plant is a challenging goal. It's critical to know how plants grow and develop to provide more tools to improve them and ultimately to make food production more reliable. Multicellularity is an important prerequisite that enables complex architectures in crops. Yet Caulerpa is a plant, too, and independently evolved a land plant-like body plan, but without multicellularity and as a single cell. How does that happen?"

Chitwood and his group reasoned that the structure of Caulerpa might be reflected in the RNA's present in various parts of the cell. (RNA's are the molecular products found when genes are expressed or "turned on.") For example, the frond part of the cell might show different RNA's from the holdfast part of the cell. When performed on Caulerpa, this type of analysis would also provide insights into the distributions of RNA's within single cells, a feat normally difficult to achieve because cells in multicellular organisms are so small.

"The result turned out to be even more interesting than we'd hoped," said Chitwood. "Not only do different parts of the Caulerpa cell show distinctly different RNA's, but there is also some correlation between RNA's that are expressed together within different parts of the Caulerpa cell with those expressed together in the multicellular organs of tomato. Even though the lineage that Caulerpa belongs to probably separated from that giving rise to land plants more than 500 million years ago, in many ways Caulerpa displays patterns of RNA accumulation shared with land plants today."

"Our work on Caulerpa has given me and my team a whole new way of thinking about plant structure and development," Chitwood continued enthusiastically. "It's clear that the basic form we associate with land plants can arise with and without multicellularity. In fact, higher plant cells are connected to each other by means of channels called plasmodesmata, and it has been argued that multicellular land plants exhibit properties similar to single-celled organisms like Caulerpa.

What if we could really think of higher plants, like tomato, as one cell instead of multitudes? This idea of thinking of multicellular land plants, like tomato, and giant single-celled algae, like Caulerpa, similarly is supported by our results that demonstrate a shared pattern of RNA accumulation. Frankly, our results have caused us to think about plant structure from an entirely different perspective, which is the most important outcome from this research."

About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research aims to feed the hungry and improve human health, preserve and renew the environment and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants and contract revenue from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, U.S. Department of Agriculture, U.S. Agency for International Development, the Bill & Melinda Gates and Howard G. Buffett Foundations.

To keep up to date with Danforth Center's current operations and areas of research, please visit, http://www.danforthcenter.org, featuring information on Center scientists, news, and the "Roots & Shoots" blog. Follow us on Twitter at @DanforthCenter.

Media Contact

Melanie Bernds
mbernds@danforthcenter.org
314-587-1647

http://www.danforthcenter.org 

Melanie Bernds | EurekAlert!

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>