Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key molecule in immune system provides clues for designing drugs

28.12.2010
A team from the University of Pennsylvania School of Medicine and Utrecht University has deciphered a key step in an evolutionarily old branch of the immune response. This system, called complement, comprises a network of proteins that “complement” the work of antibodies in destroying foreign invaders. It serves as a rapid defense mechanism in most species from primitive sponges to humans.

In a study published in the December 24 issue of Science, the groups of John Lambris, PhD, the Dr. Ralph and Sally Weaver Professor of Research Medicine at Penn, and Piet Gros at Utrecht, detail the atomic structure of two key transient enzyme complexes in the human complement system.

Complement proteins mark both bacterial and dying host cells for elimination by the body's cellular cleanup services and have been implicated in at least 30 diseases, including stroke, myocardial infarction, and age-related macular degeneration. The findings, Lambris says, provide a molecular scaffold for designing novel drug therapeutics.

"Now we will be able to design specific complement inhibitors to target this complex and in that way inhibit activation of the complement cascade, because now we know which parts of the proteins are essential for activity," Lambris says.

Guided By Self-Control
The complement system is a form of "innate," or generic immunity, unlike "adaptive" immune responses, in which cellular mediators such as B and T cells learn to target specific antigens through recognition by either antibodies or cell receptors. The complement process unfolds as a complex biochemical network of molecular and cellular communication events, which result in the destruction and elimination of pathogens and damaged cells and eventual recruitment of immune cells.

The two enzyme complexes Lambris studied, called C3bB and C3bBD, drive a central step in amplifying the response by complement proteins. In that step, the complement protein C3 is enzymatically cleaved to form C3b, which binds to the surface of a target cell. C3b then binds factor B to produce C3bB. This complex, in turn, binds another enzyme, factor D (producing C3bBD), which cleaves the complex to form the active C3bBb. The major target of the active C3bBb is C3 itself, resulting in rapid amplification of the complement cascade.

To capture structural snapshots of C3bB and C3bBD, the researchers first generated mutant proteins that would stabilize the complexes in their active forms. Then, Lambris and Gros used x-ray crystallography to describe the two complexes in atomic detail. They found that, upon binding to C3b, factor B changes its shape to form an "open complex," which can then be bound by factor D. Factor D, in turn, shifts its shape in a more subtle yet no less important way: The free protein is inactive because a protein loop blocks the active site of the enzyme. Upon binding to C3bB, that loop alters its position, thereby activating factor D to cleave C3bB into the C3bBb complex.

These findings, Lambris said, provide molecular explanations for several safety features of the complement system. First, they explain why factor D is inactive on its own, but active when engaged by C3bB. They also illustrate a "double safety catch" mechanism the system uses to keep itself in check, preventing complement activation in the absence of a target.

Finally, and perhaps most importantly, they provide data that can aid the design of inhibitors against factor D, which may prove useful in the treatment of complement-associated diseases.

"Besides shedding light on a highly elegant mechanism of concerted activation and intrinsic regulation, this work also offers a detailed insight into one of the most important therapeutic targets within the complement network, which may facilitate rational drug development and could lead to novel drugs for treating complement-related diseases," Lambris says.

Co-authors include Federico Forneris, Jin Wu, and Rachel Wallace of Utrecht University, and Penn researchers Daniel Ricklin and Apostolia Tzekou.

The research was funded by the Netherlands Organization for Scientific Research and the National Institute of Allergy and Infectious Diseases and National Institute of General Medical Sciences.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and psychiatry & behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>