Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of DNA repair complex reveals workings of powerful cell motor

28.03.2011
The discovery at Scripps Research could usher in a new way of designing non-toxic drugs, researchers say

Over the last years, two teams of researchers at The Scripps Research Institute have steadily built a model of how a powerful DNA repair complex works. Now, their latest discovery provides revolutionary insights into the way the molecular motor inside the complex functions – findings they say may have implications for treatment of disorders ranging from cancer to cystic fibrosis.

In a paper published in an Advance Online Edition of Nature Structural and Molecular Biology March 27, 2011, the scientists say that the complex's motor molecule, known as Rad50, is a surprisingly flexible protein that can change shape and even rotate depending on the task at hand.

The finding solves the long-standing mystery of how a single protein complex known as MRN (Mre11-Rad50-Nbs1) can repair DNA in a number of different, and tricky, ways that seem impossible for "standard issue" proteins to do, say team leaders Scripps Research Professor John Tainer, Ph.D., and Scripps Research Professor Paul Russell, Ph.D., who also collaborated with members of the Lawrence Berkeley National Laboratory on the study.

They say the finding also provides a critical insight into the ABC-ATPase superfamily of molecular motors, of which Rad50 is a member.

"Rad50 and its brethren proteins in this superfamily are biology's general motors," said Tainer, "and if we know how they work, we might be able to control biological outcomes when we need to."

For example, knowing that Rad50 changes its contour to perform a function suggests it might be possible to therapeutically target unique elements in that specific conformation. "There could be a new generation of drugs that are designed not against an active site, like most drugs now (an approach that can cause side effects, but against the shape the protein needs to be in to work," Tainer said.

Russell added, "Proteins are often viewed as static, but we are showing the moving parts in this complex. They are dynamic. They move about and change shape when engaging with other molecules."

First Responder

The MRN complex is known as a first-responder molecule that rushes in to repair serious double-strand breaks in the DNA helix—an event that normally occurs about 10 times a day per cell due to ultraviolet light and radiation damage, etc. If these breaks are not fixed, dangerous chromosomal rearrangements can occur that lead to cancer. Paradoxically, the complex also mends DNA breaks promoted by chemotherapy, protecting cells against cancer treatment.

When MRN senses a break, it activates an alarm telling the cell to shut down division until repairs are made. Then, it binds to ATP (an energy source) and repairs DNA in three different ways, depending on whether two ends of strands need to be joined together or if DNA sequences need to be replicated. "The same complex has to decide the extent of damage and be able to do multiple things," Tainer said. "The mystery was how it can do it all."

To find out, Tainer, head of a structural biology group, and Russell, who leads a yeast genetics laboratory, began collaborating five years ago. With the additional help of team members at Lawrence Berkeley National Laboratory and its Advanced Light Source beamline, called SIBYLS, the collaboration has produced a series of high-resolution images of the crystal structure of parts of all three proteins (rad50, Mre11, and Nbs1), taken from fission yeast and archaea. The scientists also used the lab's X-ray scattering tool to determine the proteins' overall architecture in solution, which approximates how a protein appears in a natural state.

The scientists say that the parts of the complex, when imagined together as a whole unit, resemble an octopus: the head consists of the repair machinery (the Rad50 motor and the Mre11 protein, which is an enzyme that can break bonds between nucleic acids) and the octopus arms are made up of Nbs1 which can grab the molecules needed to help the machinery mend the strands.

In this study, Tainer and Russell were able to produce crystal and X-ray scattering images of parts of where Rad50 and Mre11 touched each other, and what happened when ATP bound to this complex and what it looked like when it didn't.

In these four new structures, they showed that ATP binding allows Rad50 to drastically change its shape. When not bound to ATP, Rad50 is flexible and floppy, but bound to ATP, Rad50 snaps into a ring that presumably closes around DNA in order to repair it.

"We saw a lot of big movement on a molecular scale," said Tainer. "Rad50 is like a rope that can pull. It appears to be a dynamic system of communicating with other molecules, and so we can now see how flexibly linked proteins can alter their physical states to control outcomes in biology."

"We thought ATP allowed Rad50 to change shape, but now we have proof of it and how it works," Russell said. "This is a key part of the MRN puzzle."

An Engine for Many Vehicles

Rad50 and ATP provide the motor and gas for a number of biological machines that operate across species. These machines are linked to a number of disorders, such as cystic fibrosis, which is caused by a defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is a member of the ABC ATPase superfamily.

"Our study suggests that ABC ATPase proteins are used so often in biology because they can flexibly hook up to so many different things and produce a specific biological outcome," Tainer said.

Given this new prototypic understanding of these motors, Tainer and Russell envision a future in which therapies might be designed that target Rad50 when it changes into a shape that promotes a disease. For example, chemotherapy could be coupled with an agent that prevents the MRN complex from repairing DNA damage, promoting death of cancer cells.

"There are some potentially very cool applications to these findings that we are only beginning to think about," Russell said.

Co-authors of the paper, "ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair," include Gareth J. Williams, Soumita SilDas, and Michal Hammel of the Lawrence Berkeley National Laboratory; and R. Scott Williams, Jessica S. Williams, Gabriel Moncalian, Andy Arval, Oliver Limbo, and Grant Guenther of The Scripps Research Institute.

The study was funded by the National Cancer Institute, the National Institutes of Health, and the Department of Energy.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>