Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure from Disorder

21.06.2013
Many proteins work like Swiss Army knives, fitting multiple functions into their elaborately folded structures.

A bit mysteriously, some proteins manage to multitask even with structures that are unfolded and floppy—“intrinsically disordered.” In this week’s issue of Nature, scientists at The Scripps Research Institute (TSRI) report their discovery of an important trick that a well-known intrinsically disordered protein (IDP) uses to expand and control its functionality.

“We’ve found what is probably a general mechanism by which IDPs modulate their activities,” said TSRI Professor Peter E. Wright, who is Cecil H. and Ida M. Green Investigator in Biomedical Research and member of TSRI’s Skaggs Institute for Chemical Biology. Wright was a senior investigator for the study, along with TSRI Associate Professor Ashok A. Deniz.

The study focused on an IDP known as the adenovirus “early region 1A oncoprotein” (E1A). An adenovirus starts producing copies of E1A shortly after it infects a cell. E1A proteins interact with a variety of key cellular molecules to quickly subvert the cell’s replication machinery for the benefit of the virus.

Links to Disease

E1A is worth studying not just because it facilitates adenovirus infections, but also because it’s a prime example of an IDP. Such proteins frequently play outsized roles in cells, as crucial “molecular hubs” within very large protein-interaction networks. IDPs also include proteins that are linked to major diseases, including the tumor suppressor protein p53, the alpha synuclein protein of Parkinson’s disease, and the amyloid beta and tau proteins of Alzheimer’s disease.

The simple, flexible structures of IDPs are often promiscuously “sticky,” which in principle explains why they would have multiple molecular partners. But IDPs don’t connect willy-nilly with other proteins, and scientists have wondered how they regulate their diverse interactions.

Wright’s laboratory and others have been studying these interactions using a technique called nuclear magnetic resonance (NMR) spectroscopy. However, E1A’s intrinsic stickiness means that it tends to aggregate at NMR-friendly concentrations, rendering this method of analysis problematic. (Most proteins, by folding up into complex shapes, effectively cloak their stickier bits.)

A Sensitive Technique

For the new study, Wright and his colleagues turned to Deniz, whose laboratory specializes in the use of sensitive, cutting-edge techniques to study the dynamics of disordered proteins and other biological molecules. One of these techniques, a quantum optics method known as single-molecule FRET, uses a tiny fluorescent beacon system to register distances between selected parts of a protein. In effect, this allows investigators to monitor in real time the shape-changes of E1A—characterized by Wright’s laboratory in earlier work—which mark its rapid couplings and uncouplings with other proteins.

“The technique is sensitive enough that we can use it at extremely low protein concentrations, even focusing on single E1A proteins to avoid the loss of information that comes from the usual averaging of results over multiple proteins,” Deniz said.

Postdoctoral fellows Allan Chris M. Ferreon and Josephine C. Ferreon, in the Deniz and Wright laboratories, respectively, used the single-molecule FRET method to detail the strengths (“affinities”) with which E1A binds to two of its most important protein partners. By mapping how these binding affinities change under different conditions, they were able to obtain key insights into how E1A manages its multiple interactions.

Achieving Complexity

First, like many folded proteins, E1A turns out to employ a basic regulatory mechanism called allostery: when one protein partner binds at one part of the E1A structure, it changes the ability of the other major binding site on E1A to bind other partners.

For most proteins that use allostery, this change makes partner-binding at the other site more likely (“positive cooperativity”). For a minority, it makes partner-binding at the other site less likely (“negative cooperativity”). But E1A turns out to have the capacity for either positive cooperativity or negative cooperativity between its two major binding regions—depending on whether a third part of the protein is occupied. “Allostery itself is a mechanism for modulating a protein’s functions, and here we show that E1A takes it to another level by modulating allostery—modulating the modulation, in effect,” said Josephine Ferreon.

The finding helps explain how E1A generates and manages its functional complexity—a complexity that for viral proteins seems particularly necessary, considering how tiny viral genomes are in comparison to those of their animal hosts. Moreover, some of E1A’s key binding partners in infected cells are themselves hub-type IDPs. “So now you multiply the complexity—and you can see how proteins such as E1A manage to achieve so much so quickly within a cell,” said Allan Ferreon.

Wright regards the study as the start of a rewarding line of investigation using sensitive techniques such as single-molecule FRET. “The fact that we can get around the usual technical obstacles relating to IDPs and do these single-molecule experiments really opens up the study of IDP hub interactions,” he said.

Deniz concludes, “We’re definitely going to be studying more of these hub proteins, and I think we’re going to discover other fundamental principles by which they achieve complex layers of biological regulation and function.”

The study, “Modulation of allostery by protein intrinsic disorder” was funded by the National Institutes of Health (grants GM066833 and CA96865) and by the Skaggs Institute for Chemical Biology at TSRI.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

Mika Ono | Newswise
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>