Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of the Cellular Recycling Bin

31.01.2014
When the refuse disposal service goes on strike, heaps of trash will pile up on streets and attract vermin like mice and rats.

In a similar way, a cellular waste management system constantly picks up superfluous proteins and damaged organelles in human cells and delivers them to recycling facilities. However, if the cellular waste management system stops working, severe illnesses like Alzheimer´s disease or cancer may develop.


Capture:
The picture shows the structure of the autophagic scaffold. The scientists used atomic force microscopy to visualize the hight profile of the scaffold on artificial membranes. The protein meshwork rises gradually (yellow-red) from the ground level of the membrane (black) to the crest of the scaffold (white) where it reaches its maximum hight. The resulting two-dimensional map was then projected onto a sphere which represents the autophagosome.
Picture: Thomas Wollert
Copyright: MPI of Biochemistry

Scientists at the Max Planck Institute of Biochemistry in Martinsried near Munich, Germany, recently revealed how a major cellular recycling system – autophagy – works. The results of the study have now been published in the research journal Cell.

The autophagic system in cells captures cellular waste and delivers it to specialized recycling facilities, called lysosomes. Thus autophagy protects the cell from accumulating cell debris. If autophagy slows down or stops working, severe diseases like cancer, Parkinson´s or Alzheimer´s disease may occur.

Much in the same way as trash bags envelop waste, a membrane engulfs cellular debris during autophagy. This molecular “recycling bag” is called autophagosome. After the membrane has been wrapped around the waste, it is transported to lysosomes for degradation. Because lysosomes are also surrounded by membranes, autophagosomes are able to fuse with them to deliver their content without leakage. Finally, an armada of different enzymes degrades the lysosomal content into its basic molecular building blocks.

Cellular waste differs enormously in size and shape, imposing a major challenge for the autophagic system. On the one hand the membrane of autophagosomes needs to be flexible enough to engulf the waste. On the other hand, mechanical stability is needed to guide the membrane around the waste in a zipper-like fashion. Thomas Wollert and his Research Group “Molecular Membrane and Organelle Biology” now revealed the molecular architecture of an autophagic membrane scaffold, which mechanically supports autophagosomes.

Small meshes – large effects
The scaffold is a flat meshwork made of proteins that cover the membrane of the autophagosome entirely. The vertices of the mesh consist of the small protein Atg8 which is attached to the autophagic membrane and serves as a molecular anchor. A second protein complex cross-links Atg8 to build up the scaffold. One mesh is only 16 nm long, i.e. 10.000-fold shorter than a human hair is thick, and the scaffold is only 8 nm thick. When the membrane has entirely enveloped the molecular waste, the scaffold is no longer needed and removed by an enzyme which cuts Atg8 from the membrane.

Furthermore, the researchers were able to recreate the scaffold on artificial membranes in the test tube and to follow its assembly and disassembly in real time. “It is important that we understand the molecular mechanisms that drive autophagy to be able to modulate its speed”, said Thomas Wollert, MPIB group leader who supervised the study. “If we were able to accelerate autophagy, Alzheimer´s disease and other neurological disorders could perhaps be cured in the future.” [VS]

Original Publication:
Kaufmann A., V. Beier, H. G. Franquelim and Wollert T., Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly, Cell, January 30, 2014.

DOI: 10.1016/j.cell.2013.12.022

Contact
Dr. Thomas Wollert
Molecular Membrane and Organelle Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Email: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/en/news/pressroom
- Press Releases of Max Planck Institute of Biochemistry
http://www.biochem.mpg.de/en/rg/wollert
- Website of the Research Group "Molecular Membrane and Organell Biology"

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Biology in a twist -- deciphering the origins of cell behavior
31.03.2015 | National University of Singapore

nachricht Speech dynamics are coded in the left motor cortex
31.03.2015 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>