Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of cell signaling molecule suggests general on-off switch

22.04.2013
A three-dimensional image of one of the proteins that serves as an on-off switch as it binds to receptors on the surface of a cell suggests there may be a sort of main power switch that could be tripped. These surface receptors are responsible for helping cells discern light, set the heart racing, or detect pain.

The finding, published online April 21, 2013, in the journal Nature by a research collaboration involving this year's Nobel laureates in chemistry, could help in the development of more effective drugs to switch on or off the cell receptors that regulate nearly every bodily function. Already, up to half of all drugs engage these receptors, including antihistamines and beta blockers, but many of the intricacies of how these important proteins work remain unknown.

"It's important to understand how this extraordinary family of receptors work," said co-author Robert J. Lefkowitz, M.D., James B. Duke Professor of Medicine and Howard Hughes Medical Institute Investigator. "This is the kind of finding that answers a basic curiosity, but can also be of benefit if we can develop new drugs or improve the ones we have."

The research marks a collaborative reunion between Lefkowitz and Brian K. Kobilka, M.D., chair of molecular and cellular physiology at Stanford University School of Medicine. The two researchers – friends who first collaborated when Kobilka was a trainee in Lefkowitz's laboratory at Duke - shared the 2012 Nobel Prize in Chemistry for their discoveries involving the G-protein coupled receptors (GPCRs), which are activated by signaling proteins to detect hormones, neurotransmitters, pain, light.

In the current work, the researchers used X-ray crystallography to develop an atom-scale image of one of the principal signaling molecules that regulate GPCRs. This protein is called beta-arrestin1, which, among other things, works to dim a cell's response to hormones such as adrenalin.

The researchers were able to isolate and capture the beta-arrestin1 protein in an active state as it binds to a segment of the GPCR – a first. That snapshot, in high resolution, revealed that the structural conformation or shape of the protein in its active state is strikingly different than when it is inactive.

Such changes suggest there may be a general molecular mechanism that activates the beta-arrestin1 – a sort of main switch that controls the multi-functional signaling proteins.

"It's like there are brakes on in beta-arrestin1, and then when the beta-arrestin1 binds to a GPCR, the brakes are released, thereby activating beta-arrestin1," said Arun K. Shukla, PhD, assistant professor of medicine at Duke and co-lead author of the study.

The researchers are now pursuing additional structural imaging of the signaling complex consisting of beta-arrestin1 and the entire receptor protein.

In addition to Lefkowitz and Shukla, study authors at Duke include Kunhong Xiao, Rosana I. Reis, Wei-Chou Tseng, Dean P. Staus, Li-Yin Huang and Prachi Tripathi-Shukla.

Authors from Stanford include Aashish Manglik, Andrew C. Kruse, Daniel Hilger, William I. Weis and Kobilka. Authors from the University of Chicago include Serdar Uysal, Marcin Paduch, Akiko Koide, Shohei Koide and Anthony A. Kossiakoff.

The study was funded by the Stanford Medical Scientist Training Program, the American Heart Association, the National Science Foundation, the Mathers Foundation and the National Institutes of Health (NS028471, HL16037, HL70631, GM072688, GM087519, HL 075443).

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>