Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of a Protein Related to Heart and Nervous System Health Revealed

17.11.2010
May lead to smarter drug design, better understanding of a genetic disorder of the cardiovascular system

University of Michigan researchers have solved the structure of a protein that is integral to processes responsible for maintaining a healthy heart and nervous system.

The protein structure in question is cystathionine beta-synthase, known as CBS. CBS uses vitamin B6 to make hydrogen sulfide (H2S), a gaseous signaling molecule that helps maintain a healthy heart and nervous system. H2S also induces a state of suspended animation or hibernation in animals by decreasing body temperature and lowering metabolic rate.

The work to decode the structure was led by Ruma Banerjee, Ph.D., a professor in the Department of Biological Chemistry at the U-M Medical Schoool, Janet Smith, Ph.D., a research professor at the U-M Life Sciences Institute, and their colleagues. Their findings are published today in the Proceedings of the National Academy of Sciences.

"The structure of full-length CBS, which has eluded the science community for more than a decade, provides a wealth of new information about gas generation by CBS, which is especially important in the brain,” says Banerjee, the study’s senior author and the Vincent Massey Collegiate Professor of Biological Chemistry and associate chair of biological chemistry . “It also provides a framework for understanding homocystinuria-causing mutations."

Mutations in the gene for CBS cause homocystinuria, an inherited disorder that affects the central nervous system, ocular, skeletal, and cardiovascular systems.

The structure of the full-length CBS, seen here for the first time, provides a molecular explanation for homocystinuria due to CBS defects.

The activity of CBS is increased by SAMe (S-adenosylmethionine), a dietary supplement that is used for its anti-depressant and anti-inflammatory activities. SAMe also increases production of H2S by binding to CBS.

“Molecular insights into the architecture of the CBS domain to which SAMe binds open doors to rational drug design for fine-tuning H2S production for pharmaceutical purposes,” says colleague Markos Koutmos, Ph.D., a research investigator in Smith’s research group .

“We captured the CBS enzyme at two points in its complex chemical reaction by trapping two highly reactive chemical intermediates in the active site of the enzyme,” says researcher Omer Kabil, Ph.D., a postdoctoral fellow in Banerjee’s lab. The structures of these trapped species reveal details of how vitamin B6 helps CBS perform the complex chemical reactions leading to H2S production.

“The important chemical details we see in CBS can be applied to understanding the other human enzymes that depend on vitamin B6, of which there are more than 50,” says Smith, who in addition to her LSI position is also the Martha L. Ludwig Professor of Protein Structure & Function in the Department of Biological Chemistry of the Medical School.

This work was supported by grants from the National Institutes of Health.

Jennifer Farina | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>