Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong Evidence – New Insight in Muscle Function

27.04.2015

SCIENTISTS GAIN UNIQUE INSIGHT INTO THE FUNCTION OF A KEY MUSCLE PROTEIN

Thanks to the first high-resolution structural analysis of the muscle protein α-actinin, scientists now have a better understanding of how muscles work.


In a muscle every protein has to pull its weight. Thanks to high-resolution structural analysis the role of the essential muscle protein α-Actinin is now better understood.

© Gautel / Ghisleni / Pinotsis / Djinovic-Carugo

The analysis provides crucial information about the structure and function of this complex muscle protein and could lead to the development of new treatments for major muscular disorders.

The results of the project, which is funded by the Austrian Science Fund FWF and the European Commission, were recently published in the prestigious scientific journal Cell.

Muscles move many things – but first and foremost themselves. Filaments of special proteins pull against each other so that the muscle can exert force. This only works if there is a fixed point, which anchors the filaments.

These locations are known as Z-disks and are largely composed of the protein α-actinin. An international research team headed by Kristina Djinovic-Carugo from the Max F. Perutz Laboratories of the University of Vienna and Medical University of Vienna has taken a closer look at this protein.

FUNCTION FOLLOWS FORM

"We not only succeeded in describing the exact structure of the protein for the first time", explains Djinovic-Carugo, "we were also able to confirm the long-held assumption about how its function is regulated."

It emerged from the structural research that showed that α-actinin exists as a dimer, a complex consisting of two identical molecules, and that it displays a cylindrical shape, 360 Å in length (1 Å = 10 to the power of -10 metres) and 60 Å wide. Each individual molecule of the dimer has a head-and a neck-like structure followed by a four-part rod-shaped extension.

Two protein domains protruding from the rod-shaped extension in an L-shaped formation proved to be particularly interesting. "These L-shaped domains connect to the neck of the other molecule and this interaction is important for function", describes Djinovic-Carugo. "However, the really exciting discovery about these domains arose when we added the fatty acid molecule PIP2."

Scientists had actually speculated for years that PIP2 plays a key role in the functioning of muscle α-actinin. This hypothesis remained unconfirmed, however, until the following observation was made during the study of Djinovic-Carugo and her international colleagues in Germany, United Kingdom, Norway, Russia, Switzerland and Slovenia: as long as there is no PIP2 available, the L-shaped domain remains connected to the neck of the second α-actinin.

If PIP2 is available, the connection opens and renders the domain available to bind to another muscle protein – titin. The trick here – as revealed by the structural data from this FWF project – is that the neck region of the α-actinin is similar in structure to titin.

If there is no PIP2, one of the L-shaped domain of an α-actinin molecule binds to a titin-lookalike region in the neck of the opposing molecule. If PIP2 is present, the L-shaped part detaches from the neck and binds titin. The presence of PIP2 is sufficient to change the binding parameters in such a way that the one is prioritised over the other.

X-RAY VIEW OF THE CRYSTAL BALL

Regarding the methodology used in the study, Djinovic-Carugo says: "To deduce the functioning of a protein from its structure, you have to be able to identify everything down to a billionth of a metre. This is only really possible using X-ray diffraction, in which X-ray beams diffract when they encounter the fine structures of a protein, which is presented in the form of a crystal."

However, the decision to use this technology involved a tough test of the scientists’ patience at the outset: it took years to produce sufficient amounts of α-actinin to grow the protein crystals. The clarification of how α-actinin is regulated by PIP2 necessitated the use of other complicated complementary analysis methods, and this is where the expertise of Djinovic-Carugo’s international colleagues was indispensable. The comprehensive findings, which were recently acknowledged through the publication of the study in Cell, show that the long and concerted effort was worthwhile.

The importance of the project’s results extends far beyond the basic insights they provide. α-Actinin plays a role in the causes of life-threatening muscular disorders like dystrophies and cardiomyopathies. The new insights into the structure and function of this protein could lead to the development of new approaches to their treatment.

Professor Kristina Djinovic-Carugo is an internationally renowned expert in the x-ray diffraction of proteins. She heads the Department of Structural and Computational Biology ( http://zmb.univie.ac.at/en/structure-of-the-zmb/department-of-structural-and-computational-biology/ ) of the Max F. Perutz Laboratories ( https://www.mfpl.ac.at ) of the University of Vienna as well as the Laura Bassi Center for Optimized Structural Studies.

For information on Djinovic-Carugo’s research group, see: http://www.mfpl.ac.at/djinovic

Original publication: E. d. A. Ribeiro, N Pinotsis, A Ghisleni, A Salmazo, P. V. Konarev, J. Kostan, B. Sjoeblom, C. Schreiner, A. A. Polyansky, E. A. Gkougkoulia, M. R. Holt, F. L. Aachmann, B. Žagrović, E. Bordignon, K. F. Pirker, D. I. Svergun, M. Gautel and K. Djinović-Carugo: The structure and regulation of human muscle α-actinin. Cell 158, 1447 – 1460, Dec. 04, 2014 DOI: http://dx.doi.org/10.1016/j.cell.2014.10.056

Link to the publication: http://www.cell.com/cell/abstract/S0092-8674(14)01428-7


Scientific Contact:
Prof. Kristina Djinovic-Carugo
Max F. Perutz Laboratories University of Vienna Department of Structural and Computational Biology Campus Vienna Biocenter 5
1030 Vienna, Austria
M +43 / 664 / 602 77 522 03
E kristina.djinovic@univie.ac.at
W https://www.mfpl.ac.at

Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D – Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Marc Seumenicht | PR&D – Public Relations for Research & Education

Further reports about: Biology Cell Computational Biology FWF Muscle Protein disorders function muscle protein

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>