Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: news about platelets

03.08.2015

Platelets play a key role in strokes: They can even drive nerve cells in the brain into a kind of suicide mode, as scientists from the University of Würzburg now report in the journal "Blood".

A stroke typically develops as follows: A blood vessel supplying the brain with vital oxygen and nutrients is blocked by a blood clot, resulting in nerve cell death. Signs and symptoms of a stroke can include inability to move and speech problems.


After a stroke, platelets trigger apoptosis in nerve cells (left; dying nerve cells red; nuclei of healthy nerve cells blue). Without platelets, fewer nerve cells will go into apoptosis.

(Pictures: Peter Kraft / Christoph Kleinschnitz)

Platelets are a major constituent of these blood clots. They are small cell fragments that circulate in the blood vessels whose function is to stop bleeding and close wounds.

"Scientists have suspected platelets to play an important role in the development of strokes for quite some time. But their exact function was unknown until recently," says Professor Christoph Kleinschnitz, head of the Stroke Unit of the Department of Neurology of the Würzburg University Hospital.

Detrimental platelet factor

Together with colleagues from Tübingen and Belgium, the Würzburg researchers have now closed this knowledge gap. What's special about their discovery: They found out that platelets are harmful in different phases of the stroke.

In the early phase, the platelets release a special clotting protein called the Von Willebrand factor. As the scientists report in the renowned journal "Blood", this factor promotes clotting in the brain and aggravates the brain damage after a stroke.

Platelets can trigger apoptosis

But platelets are equally significant in the later phase of a stroke. In a further article in "Blood", the research team demonstrates that the platelets subsequently travel from the vessels into the brain tissue where they can directly damage the nerve cells.

"The underlying mechanism is called apoptosis," explains Dr Peter Kraft from the Department of Neurology of the Würzburg University Hospital. This is a kind of suicide programme of the nerve cells. It is activated once the platelets come into contact with the nerve cells. The researchers have proved that platelets are capable of triggering apoptosis in the brain for the first time ever.

Promising antibodies for therapy

"In order to develop new targets for therapy, it is crucial to understand how platelets behave in the various stages of the stroke," Professor Kleinschnitz explains. "We are pinning our hopes on novel antibodies that are capable of suppressing the harmful function of the platelets." In animal models, these antibodies still work even when they are administered as late as one hour after the stroke.

Moreover, the antibodies can mitigate the nerve-damaging effect of the Von Willebrand factor. And they cause the nerve cells to go into suicide mode less frequently. "So antibodies could target different causes of stroke and be beneficial to many patients," Kleinschnitz says. Before translating into actual therapies, however, additional investigations and safety tests will have to be conducted.

Their research was funded by Deutsche Forschungsgemeinschaft (DFG) within the scope of the Würzburg Collaborative Research Center 688.

Two publications in "Blood"

“Platelets induce apoptosis via membrane-bound FasL”, Rebecca I. Schleicher, Frank Reichenbach, Peter Kraft, Anil Kumar, Mario Lescan, Franziska Todt, Kerstin Göbel, Tobias Geisler, Axel Bauer, Marcus Olbrich, Martin Schaller, Sebastian Wesselborg, Lorraine O’Reilly, Sven G. Meuth, Klaus Schulze-Osthoff, Meinrad Gawaz, Xuri Li, Christoph Kleinschnitz, Frank Edlich, and Harald F. Langer, Blood, 31 July 2015, DOI: http://dx.doi.org/10.1182/blood-2013-12-544445

“While not essential for normal thrombosis and hemostasis, platelet-derived von Willebrand factor fosters cerebral ischemia reperfusion injury in mice”, Sebastien Verhenne, Frederik Denorme, Sarah Libbrecht, Aline Vandenbulcke, Inge Pareyn, Hans Deckmyn, Antoon Lambrecht, Bernhard Nieswandt, Christoph Kleinschnitz, Karen Vanhoorelbeke, Simon F. De Meyer, Blood, 24 July 2015, DOI: http://dx.doi.org/10.1182/blood-2015-03-632901

Contact

Prof. Dr. Christoph Kleinschnitz, Department of Neurology of the Würzburg University Hospital, Phone: +49 931 201-23756, christoph.kleinschnitz@uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>