Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stroke: news about platelets


Platelets play a key role in strokes: They can even drive nerve cells in the brain into a kind of suicide mode, as scientists from the University of Würzburg now report in the journal "Blood".

A stroke typically develops as follows: A blood vessel supplying the brain with vital oxygen and nutrients is blocked by a blood clot, resulting in nerve cell death. Signs and symptoms of a stroke can include inability to move and speech problems.

After a stroke, platelets trigger apoptosis in nerve cells (left; dying nerve cells red; nuclei of healthy nerve cells blue). Without platelets, fewer nerve cells will go into apoptosis.

(Pictures: Peter Kraft / Christoph Kleinschnitz)

Platelets are a major constituent of these blood clots. They are small cell fragments that circulate in the blood vessels whose function is to stop bleeding and close wounds.

"Scientists have suspected platelets to play an important role in the development of strokes for quite some time. But their exact function was unknown until recently," says Professor Christoph Kleinschnitz, head of the Stroke Unit of the Department of Neurology of the Würzburg University Hospital.

Detrimental platelet factor

Together with colleagues from Tübingen and Belgium, the Würzburg researchers have now closed this knowledge gap. What's special about their discovery: They found out that platelets are harmful in different phases of the stroke.

In the early phase, the platelets release a special clotting protein called the Von Willebrand factor. As the scientists report in the renowned journal "Blood", this factor promotes clotting in the brain and aggravates the brain damage after a stroke.

Platelets can trigger apoptosis

But platelets are equally significant in the later phase of a stroke. In a further article in "Blood", the research team demonstrates that the platelets subsequently travel from the vessels into the brain tissue where they can directly damage the nerve cells.

"The underlying mechanism is called apoptosis," explains Dr Peter Kraft from the Department of Neurology of the Würzburg University Hospital. This is a kind of suicide programme of the nerve cells. It is activated once the platelets come into contact with the nerve cells. The researchers have proved that platelets are capable of triggering apoptosis in the brain for the first time ever.

Promising antibodies for therapy

"In order to develop new targets for therapy, it is crucial to understand how platelets behave in the various stages of the stroke," Professor Kleinschnitz explains. "We are pinning our hopes on novel antibodies that are capable of suppressing the harmful function of the platelets." In animal models, these antibodies still work even when they are administered as late as one hour after the stroke.

Moreover, the antibodies can mitigate the nerve-damaging effect of the Von Willebrand factor. And they cause the nerve cells to go into suicide mode less frequently. "So antibodies could target different causes of stroke and be beneficial to many patients," Kleinschnitz says. Before translating into actual therapies, however, additional investigations and safety tests will have to be conducted.

Their research was funded by Deutsche Forschungsgemeinschaft (DFG) within the scope of the Würzburg Collaborative Research Center 688.

Two publications in "Blood"

“Platelets induce apoptosis via membrane-bound FasL”, Rebecca I. Schleicher, Frank Reichenbach, Peter Kraft, Anil Kumar, Mario Lescan, Franziska Todt, Kerstin Göbel, Tobias Geisler, Axel Bauer, Marcus Olbrich, Martin Schaller, Sebastian Wesselborg, Lorraine O’Reilly, Sven G. Meuth, Klaus Schulze-Osthoff, Meinrad Gawaz, Xuri Li, Christoph Kleinschnitz, Frank Edlich, and Harald F. Langer, Blood, 31 July 2015, DOI:

“While not essential for normal thrombosis and hemostasis, platelet-derived von Willebrand factor fosters cerebral ischemia reperfusion injury in mice”, Sebastien Verhenne, Frederik Denorme, Sarah Libbrecht, Aline Vandenbulcke, Inge Pareyn, Hans Deckmyn, Antoon Lambrecht, Bernhard Nieswandt, Christoph Kleinschnitz, Karen Vanhoorelbeke, Simon F. De Meyer, Blood, 24 July 2015, DOI:


Prof. Dr. Christoph Kleinschnitz, Department of Neurology of the Würzburg University Hospital, Phone: +49 931 201-23756,

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>