Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: news about platelets

03.08.2015

Platelets play a key role in strokes: They can even drive nerve cells in the brain into a kind of suicide mode, as scientists from the University of Würzburg now report in the journal "Blood".

A stroke typically develops as follows: A blood vessel supplying the brain with vital oxygen and nutrients is blocked by a blood clot, resulting in nerve cell death. Signs and symptoms of a stroke can include inability to move and speech problems.


After a stroke, platelets trigger apoptosis in nerve cells (left; dying nerve cells red; nuclei of healthy nerve cells blue). Without platelets, fewer nerve cells will go into apoptosis.

(Pictures: Peter Kraft / Christoph Kleinschnitz)

Platelets are a major constituent of these blood clots. They are small cell fragments that circulate in the blood vessels whose function is to stop bleeding and close wounds.

"Scientists have suspected platelets to play an important role in the development of strokes for quite some time. But their exact function was unknown until recently," says Professor Christoph Kleinschnitz, head of the Stroke Unit of the Department of Neurology of the Würzburg University Hospital.

Detrimental platelet factor

Together with colleagues from Tübingen and Belgium, the Würzburg researchers have now closed this knowledge gap. What's special about their discovery: They found out that platelets are harmful in different phases of the stroke.

In the early phase, the platelets release a special clotting protein called the Von Willebrand factor. As the scientists report in the renowned journal "Blood", this factor promotes clotting in the brain and aggravates the brain damage after a stroke.

Platelets can trigger apoptosis

But platelets are equally significant in the later phase of a stroke. In a further article in "Blood", the research team demonstrates that the platelets subsequently travel from the vessels into the brain tissue where they can directly damage the nerve cells.

"The underlying mechanism is called apoptosis," explains Dr Peter Kraft from the Department of Neurology of the Würzburg University Hospital. This is a kind of suicide programme of the nerve cells. It is activated once the platelets come into contact with the nerve cells. The researchers have proved that platelets are capable of triggering apoptosis in the brain for the first time ever.

Promising antibodies for therapy

"In order to develop new targets for therapy, it is crucial to understand how platelets behave in the various stages of the stroke," Professor Kleinschnitz explains. "We are pinning our hopes on novel antibodies that are capable of suppressing the harmful function of the platelets." In animal models, these antibodies still work even when they are administered as late as one hour after the stroke.

Moreover, the antibodies can mitigate the nerve-damaging effect of the Von Willebrand factor. And they cause the nerve cells to go into suicide mode less frequently. "So antibodies could target different causes of stroke and be beneficial to many patients," Kleinschnitz says. Before translating into actual therapies, however, additional investigations and safety tests will have to be conducted.

Their research was funded by Deutsche Forschungsgemeinschaft (DFG) within the scope of the Würzburg Collaborative Research Center 688.

Two publications in "Blood"

“Platelets induce apoptosis via membrane-bound FasL”, Rebecca I. Schleicher, Frank Reichenbach, Peter Kraft, Anil Kumar, Mario Lescan, Franziska Todt, Kerstin Göbel, Tobias Geisler, Axel Bauer, Marcus Olbrich, Martin Schaller, Sebastian Wesselborg, Lorraine O’Reilly, Sven G. Meuth, Klaus Schulze-Osthoff, Meinrad Gawaz, Xuri Li, Christoph Kleinschnitz, Frank Edlich, and Harald F. Langer, Blood, 31 July 2015, DOI: http://dx.doi.org/10.1182/blood-2013-12-544445

“While not essential for normal thrombosis and hemostasis, platelet-derived von Willebrand factor fosters cerebral ischemia reperfusion injury in mice”, Sebastien Verhenne, Frederik Denorme, Sarah Libbrecht, Aline Vandenbulcke, Inge Pareyn, Hans Deckmyn, Antoon Lambrecht, Bernhard Nieswandt, Christoph Kleinschnitz, Karen Vanhoorelbeke, Simon F. De Meyer, Blood, 24 July 2015, DOI: http://dx.doi.org/10.1182/blood-2015-03-632901

Contact

Prof. Dr. Christoph Kleinschnitz, Department of Neurology of the Würzburg University Hospital, Phone: +49 931 201-23756, christoph.kleinschnitz@uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

Magnetic moment of a single antiproton determined with greatest precision ever

19.01.2017 | Physics and Astronomy

CRISPR meets single-cell sequencing in new screening method

19.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>