Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress test for fir trees

09.04.2014

Terahertz rays can be used to determine the change in water content of leaves without destroying them.

 This is being demonstrated in a recent publication by biologists and physicists from Marburg that appears in a special issue of the journal "Plant Physiology”. Reduced water content leads to increased permeability of the leaves for terahertz waves, the authors say. Thanks to the new method, researchers can measure stress responses in many individual plants over long periods of time.


Caption: David Behringer (left) and Norman Born adjust the measuring system.

(Photo: Philipps-Universität/Ralf Gente)

Global climate change is expected to cause extreme weather conditions – like distinct periods of drought – in the Mediterranean and Central Europe in the future. "Most tree species are very sensitive to drought stress which is caused by lack of water", David Behringer explains; the biologist from Marburg is co-author of the current publication.

To estimate the survival chances of plants under different environmental conditions one has to know the genetic and physiological background of drought stress tolerance in different plants as precisely as possible.

"So far, no methods for the specific investigation of stress responses of plants have been available", adds Professor Dr. Birgit Ziegenhagen, head of conservation biology at the university of Marburg and co-author of the study. "Common measurement methods assess the drought stress either through indirect processes or the measurement leads to the destruction of the plant material."

Therefore, the scientists used terahertz rays – electromagnetic waves in the spectrum between microwaves and infrared light. The biologists in Ziegenhagen’s group used the expertise of their colleagues from the Department of Experimental Semiconductor Physics. "It has been shown that terahertz waves are absorbed almost completely by water while they pass through many solids freely", Professor Dr. Martin Koch explains. The physicist is also involved in the current publication.

Researchers took advantage from another characteristic of terahertz waves, as co-author Norman Born from Koch's working group says: "Since terahertz waves have a much shorter wavelength than microwave radiation, it is possible to measure the thin needles of fir trees."

The authors tested their method on a species of fir trees because conifers with their little leaf surfaces are particularly difficult to study by conventional methods.

For the first time, the researchers from Marburg monitored a great number of plant seedlings over a period of several weeks with the new technique; by doing so, the group has been able to observe, compare and evaluate stress reactions directly. The researchers irradiated a number of plantlets repeatedly by terahertz waves, so that they were able to record the change of water content in the needles accurately and in real time. This was only possible by using the special design of the terahertz spectrometer which was developed in Marburg.

The non-destructive long-term measurements allow accurate prediction of how long a plant can tolerate drought under certain conditions. "Thanks to the new technology, it is possible to expose plants of different genotypes to the same stress to characterize deviant reaction", says conservation biologist and co-author Dr. Sascha Liepelt. Martin Koch as Head of Experimental Semiconductor Physics is looking forward to the continuation of the research work: The "Johannes Hübner Foundation" will support the ongoing work by a scholarship; it will be used to adapt the system to other plant species and conduct in-depth studies.

Original publication: Norman Born, David Behringer & al.: Monitoring plants drought stress response using terahertz time-domain spectroscopy , Plant Physiology 2014 , pp. 113.233601v1 - 113.233601, DOI : 10.1104/pp.113.233601

For more information:
Contact:
Norman Born,
Subject Experimental Semiconductor Physics
Tel : 06421 28-24156
E -mail : norman.born@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/experimentelle-halbleiterphysik/agkoch

David Behringer,
Department of Nature Conservation Biology
Tel : 06421 28-23489
E -mail : david.behringer@biologie.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb17/fachgebiete/naturschutz/naturschutzbiologie/

Press release on Forest Ecology Research (in german): http://www.uni-marburg.de/aktuelles/news/2013d/1213b

Johannes Scholten | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>