Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress test for fir trees

09.04.2014

Terahertz rays can be used to determine the change in water content of leaves without destroying them.

 This is being demonstrated in a recent publication by biologists and physicists from Marburg that appears in a special issue of the journal "Plant Physiology”. Reduced water content leads to increased permeability of the leaves for terahertz waves, the authors say. Thanks to the new method, researchers can measure stress responses in many individual plants over long periods of time.


Caption: David Behringer (left) and Norman Born adjust the measuring system.

(Photo: Philipps-Universität/Ralf Gente)

Global climate change is expected to cause extreme weather conditions – like distinct periods of drought – in the Mediterranean and Central Europe in the future. "Most tree species are very sensitive to drought stress which is caused by lack of water", David Behringer explains; the biologist from Marburg is co-author of the current publication.

To estimate the survival chances of plants under different environmental conditions one has to know the genetic and physiological background of drought stress tolerance in different plants as precisely as possible.

"So far, no methods for the specific investigation of stress responses of plants have been available", adds Professor Dr. Birgit Ziegenhagen, head of conservation biology at the university of Marburg and co-author of the study. "Common measurement methods assess the drought stress either through indirect processes or the measurement leads to the destruction of the plant material."

Therefore, the scientists used terahertz rays – electromagnetic waves in the spectrum between microwaves and infrared light. The biologists in Ziegenhagen’s group used the expertise of their colleagues from the Department of Experimental Semiconductor Physics. "It has been shown that terahertz waves are absorbed almost completely by water while they pass through many solids freely", Professor Dr. Martin Koch explains. The physicist is also involved in the current publication.

Researchers took advantage from another characteristic of terahertz waves, as co-author Norman Born from Koch's working group says: "Since terahertz waves have a much shorter wavelength than microwave radiation, it is possible to measure the thin needles of fir trees."

The authors tested their method on a species of fir trees because conifers with their little leaf surfaces are particularly difficult to study by conventional methods.

For the first time, the researchers from Marburg monitored a great number of plant seedlings over a period of several weeks with the new technique; by doing so, the group has been able to observe, compare and evaluate stress reactions directly. The researchers irradiated a number of plantlets repeatedly by terahertz waves, so that they were able to record the change of water content in the needles accurately and in real time. This was only possible by using the special design of the terahertz spectrometer which was developed in Marburg.

The non-destructive long-term measurements allow accurate prediction of how long a plant can tolerate drought under certain conditions. "Thanks to the new technology, it is possible to expose plants of different genotypes to the same stress to characterize deviant reaction", says conservation biologist and co-author Dr. Sascha Liepelt. Martin Koch as Head of Experimental Semiconductor Physics is looking forward to the continuation of the research work: The "Johannes Hübner Foundation" will support the ongoing work by a scholarship; it will be used to adapt the system to other plant species and conduct in-depth studies.

Original publication: Norman Born, David Behringer & al.: Monitoring plants drought stress response using terahertz time-domain spectroscopy , Plant Physiology 2014 , pp. 113.233601v1 - 113.233601, DOI : 10.1104/pp.113.233601

For more information:
Contact:
Norman Born,
Subject Experimental Semiconductor Physics
Tel : 06421 28-24156
E -mail : norman.born@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/experimentelle-halbleiterphysik/agkoch

David Behringer,
Department of Nature Conservation Biology
Tel : 06421 28-23489
E -mail : david.behringer@biologie.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb17/fachgebiete/naturschutz/naturschutzbiologie/

Press release on Forest Ecology Research (in german): http://www.uni-marburg.de/aktuelles/news/2013d/1213b

Johannes Scholten | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>