Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress test for fir trees

09.04.2014

Terahertz rays can be used to determine the change in water content of leaves without destroying them.

 This is being demonstrated in a recent publication by biologists and physicists from Marburg that appears in a special issue of the journal "Plant Physiology”. Reduced water content leads to increased permeability of the leaves for terahertz waves, the authors say. Thanks to the new method, researchers can measure stress responses in many individual plants over long periods of time.


Caption: David Behringer (left) and Norman Born adjust the measuring system.

(Photo: Philipps-Universität/Ralf Gente)

Global climate change is expected to cause extreme weather conditions – like distinct periods of drought – in the Mediterranean and Central Europe in the future. "Most tree species are very sensitive to drought stress which is caused by lack of water", David Behringer explains; the biologist from Marburg is co-author of the current publication.

To estimate the survival chances of plants under different environmental conditions one has to know the genetic and physiological background of drought stress tolerance in different plants as precisely as possible.

"So far, no methods for the specific investigation of stress responses of plants have been available", adds Professor Dr. Birgit Ziegenhagen, head of conservation biology at the university of Marburg and co-author of the study. "Common measurement methods assess the drought stress either through indirect processes or the measurement leads to the destruction of the plant material."

Therefore, the scientists used terahertz rays – electromagnetic waves in the spectrum between microwaves and infrared light. The biologists in Ziegenhagen’s group used the expertise of their colleagues from the Department of Experimental Semiconductor Physics. "It has been shown that terahertz waves are absorbed almost completely by water while they pass through many solids freely", Professor Dr. Martin Koch explains. The physicist is also involved in the current publication.

Researchers took advantage from another characteristic of terahertz waves, as co-author Norman Born from Koch's working group says: "Since terahertz waves have a much shorter wavelength than microwave radiation, it is possible to measure the thin needles of fir trees."

The authors tested their method on a species of fir trees because conifers with their little leaf surfaces are particularly difficult to study by conventional methods.

For the first time, the researchers from Marburg monitored a great number of plant seedlings over a period of several weeks with the new technique; by doing so, the group has been able to observe, compare and evaluate stress reactions directly. The researchers irradiated a number of plantlets repeatedly by terahertz waves, so that they were able to record the change of water content in the needles accurately and in real time. This was only possible by using the special design of the terahertz spectrometer which was developed in Marburg.

The non-destructive long-term measurements allow accurate prediction of how long a plant can tolerate drought under certain conditions. "Thanks to the new technology, it is possible to expose plants of different genotypes to the same stress to characterize deviant reaction", says conservation biologist and co-author Dr. Sascha Liepelt. Martin Koch as Head of Experimental Semiconductor Physics is looking forward to the continuation of the research work: The "Johannes Hübner Foundation" will support the ongoing work by a scholarship; it will be used to adapt the system to other plant species and conduct in-depth studies.

Original publication: Norman Born, David Behringer & al.: Monitoring plants drought stress response using terahertz time-domain spectroscopy , Plant Physiology 2014 , pp. 113.233601v1 - 113.233601, DOI : 10.1104/pp.113.233601

For more information:
Contact:
Norman Born,
Subject Experimental Semiconductor Physics
Tel : 06421 28-24156
E -mail : norman.born@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/experimentelle-halbleiterphysik/agkoch

David Behringer,
Department of Nature Conservation Biology
Tel : 06421 28-23489
E -mail : david.behringer@biologie.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb17/fachgebiete/naturschutz/naturschutzbiologie/

Press release on Forest Ecology Research (in german): http://www.uni-marburg.de/aktuelles/news/2013d/1213b

Johannes Scholten | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>