Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress test for fir trees

09.04.2014

Terahertz rays can be used to determine the change in water content of leaves without destroying them.

 This is being demonstrated in a recent publication by biologists and physicists from Marburg that appears in a special issue of the journal "Plant Physiology”. Reduced water content leads to increased permeability of the leaves for terahertz waves, the authors say. Thanks to the new method, researchers can measure stress responses in many individual plants over long periods of time.


Caption: David Behringer (left) and Norman Born adjust the measuring system.

(Photo: Philipps-Universität/Ralf Gente)

Global climate change is expected to cause extreme weather conditions – like distinct periods of drought – in the Mediterranean and Central Europe in the future. "Most tree species are very sensitive to drought stress which is caused by lack of water", David Behringer explains; the biologist from Marburg is co-author of the current publication.

To estimate the survival chances of plants under different environmental conditions one has to know the genetic and physiological background of drought stress tolerance in different plants as precisely as possible.

"So far, no methods for the specific investigation of stress responses of plants have been available", adds Professor Dr. Birgit Ziegenhagen, head of conservation biology at the university of Marburg and co-author of the study. "Common measurement methods assess the drought stress either through indirect processes or the measurement leads to the destruction of the plant material."

Therefore, the scientists used terahertz rays – electromagnetic waves in the spectrum between microwaves and infrared light. The biologists in Ziegenhagen’s group used the expertise of their colleagues from the Department of Experimental Semiconductor Physics. "It has been shown that terahertz waves are absorbed almost completely by water while they pass through many solids freely", Professor Dr. Martin Koch explains. The physicist is also involved in the current publication.

Researchers took advantage from another characteristic of terahertz waves, as co-author Norman Born from Koch's working group says: "Since terahertz waves have a much shorter wavelength than microwave radiation, it is possible to measure the thin needles of fir trees."

The authors tested their method on a species of fir trees because conifers with their little leaf surfaces are particularly difficult to study by conventional methods.

For the first time, the researchers from Marburg monitored a great number of plant seedlings over a period of several weeks with the new technique; by doing so, the group has been able to observe, compare and evaluate stress reactions directly. The researchers irradiated a number of plantlets repeatedly by terahertz waves, so that they were able to record the change of water content in the needles accurately and in real time. This was only possible by using the special design of the terahertz spectrometer which was developed in Marburg.

The non-destructive long-term measurements allow accurate prediction of how long a plant can tolerate drought under certain conditions. "Thanks to the new technology, it is possible to expose plants of different genotypes to the same stress to characterize deviant reaction", says conservation biologist and co-author Dr. Sascha Liepelt. Martin Koch as Head of Experimental Semiconductor Physics is looking forward to the continuation of the research work: The "Johannes Hübner Foundation" will support the ongoing work by a scholarship; it will be used to adapt the system to other plant species and conduct in-depth studies.

Original publication: Norman Born, David Behringer & al.: Monitoring plants drought stress response using terahertz time-domain spectroscopy , Plant Physiology 2014 , pp. 113.233601v1 - 113.233601, DOI : 10.1104/pp.113.233601

For more information:
Contact:
Norman Born,
Subject Experimental Semiconductor Physics
Tel : 06421 28-24156
E -mail : norman.born@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/experimentelle-halbleiterphysik/agkoch

David Behringer,
Department of Nature Conservation Biology
Tel : 06421 28-23489
E -mail : david.behringer@biologie.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb17/fachgebiete/naturschutz/naturschutzbiologie/

Press release on Forest Ecology Research (in german): http://www.uni-marburg.de/aktuelles/news/2013d/1213b

Johannes Scholten | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>