Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the stress brake fails

21.03.2011
First discovered ten years ago, it is now the subject of new findings relating to its function: the protein SPRED2 inhibits the hormonal stress response in the body. Whether it also plays a role in the development of illnesses has yet to be established.

SPRED2: This protein is found in humans and other mammals. Among those who discovered it is a team of scientists from the University of Würzburg led by Kai Schuh. The professor is researching the function that this protein performs. In this area, he and his doctoral student Melanie Ullrich as well as other colleagues from Würzburg, Ulm, and Stockholm have now made new findings that are reported in the Journal of Biological Chemistry.

Insights into the function of the protein were gained by the scientists using mice that lack the SPRED2 gene and are therefore unable to create the protein. These animals demonstrate unusual behavior: they drink twice as much as normal mice and scratch themselves extremely often, such as behind the ears.

Abnormal hormonal states

Why this abnormal behavior? To clarify this, the researchers from the University of Würzburg’s Institute of Physiology analyzed the organism of these animals very closely. One of the discoveries they made were significantly elevated quantities of the stress hormone cortisone and of the hormone aldosterone. The latter causes an increase in the concentration of salt in the blood, thereby raising blood pressure. Consequently, the mice drink more water so they can expel the excess salt more successfully.

The studies revealed other striking irregularities. The synapses in the brain release a greater number of transmitters. There is also an overabundance of the hormones CRH and ACTH, which are formed in the brain and the pituitary gland: these two transmitters in a signal chain control the production of the hormones cortisone and aldosterone in the adrenal cortex.

SPRED2, an inhibitor protein

The researchers concluded that if the organism is missing the protein SPRED2 the hormonal signal chain from the brain to the pituitary gland to the adrenal cortex is activated far too strongly. It would appear that the protein has the effect of slowing down this system that the organism sets in motion whenever it has to overcome physical or mental stress.

This therefore means that, hormonally speaking, SPRED2-free mice are in a state of permanent stress. The researchers are therefore interpreting the continuous scratching that they observe with these animals as a stress-related compulsion. “The elevated quantity of cortisone simulates stress for them,” says Kai Schuh. No evidence has been found of other conceivable causes for the scratching, such as diabetes.

Illnesses due to defective SPRED2?

The absence of SPRED2 leads to a hormone surplus with too much cortisone and aldosterone – this would suggest that a malfunction of this gene could have something to do with high blood pressure or other illnesses, such as depression. Scientists are also considering genetic causes for both ailments.

“We are not currently aware of any illnesses in humans that are connected to SPRED2,” says Professor Schuh. But this could all change, as the example of the closely related SPRED1 gene shows: geneticists only recently proved for the first time that a defect to this gene is the sole cause of neurofibromatosis, tumor-like growths of the nerve tissue.

Next steps for the researchers

There are many questions relating to the function of the SPRED2 protein that the Würzburg researchers have yet to answer. They want to work with neurophysiologists to analyze why the synapses in the brain are overactive without the protein. They are also looking in nerve cells for molecules that interact with SPRED2.

Are the mice really scratching because the hormones are simulating a stress situation for them? Behavioral experiments, conducted in collaboration with Professor Klaus-Peter Lesch from the Department of Psychiatry, should answer this question. The scientists are also planning to administer a common antidepressant to the “stressed” animals as an experiment to see whether it might alleviate the symptoms at all.

Identification of Sprouty-related protein with EVH-1 domain (SPRED) 2 as a negative regulator of the Hypothalamic-Pituitary-Adrenal (HPA) axis, Melanie Ullrich, Karin Bundschu, Peter M. Benz, Marco Abesser, Ruth Freudinger, Tobias Fischer, Julia Ullrich, Thomas Renne, Ulrich Walter, and Kai Schuh, The Journal of Biological Chemistry, Vol. 286, Issue 11, 9477-9488, March 18, 2011, DOI 10.1074/jbc.M110.171306

Contact

Prof. Dr. Kai Schuh, Institute of Physiology at the University of Würzburg, T +49 (0)931 31-82740, kai.schuh@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biological Chemistry SPRED2 adrenal cortex blood pressure nerve cell

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>