Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the stress brake fails

21.03.2011
First discovered ten years ago, it is now the subject of new findings relating to its function: the protein SPRED2 inhibits the hormonal stress response in the body. Whether it also plays a role in the development of illnesses has yet to be established.

SPRED2: This protein is found in humans and other mammals. Among those who discovered it is a team of scientists from the University of Würzburg led by Kai Schuh. The professor is researching the function that this protein performs. In this area, he and his doctoral student Melanie Ullrich as well as other colleagues from Würzburg, Ulm, and Stockholm have now made new findings that are reported in the Journal of Biological Chemistry.

Insights into the function of the protein were gained by the scientists using mice that lack the SPRED2 gene and are therefore unable to create the protein. These animals demonstrate unusual behavior: they drink twice as much as normal mice and scratch themselves extremely often, such as behind the ears.

Abnormal hormonal states

Why this abnormal behavior? To clarify this, the researchers from the University of Würzburg’s Institute of Physiology analyzed the organism of these animals very closely. One of the discoveries they made were significantly elevated quantities of the stress hormone cortisone and of the hormone aldosterone. The latter causes an increase in the concentration of salt in the blood, thereby raising blood pressure. Consequently, the mice drink more water so they can expel the excess salt more successfully.

The studies revealed other striking irregularities. The synapses in the brain release a greater number of transmitters. There is also an overabundance of the hormones CRH and ACTH, which are formed in the brain and the pituitary gland: these two transmitters in a signal chain control the production of the hormones cortisone and aldosterone in the adrenal cortex.

SPRED2, an inhibitor protein

The researchers concluded that if the organism is missing the protein SPRED2 the hormonal signal chain from the brain to the pituitary gland to the adrenal cortex is activated far too strongly. It would appear that the protein has the effect of slowing down this system that the organism sets in motion whenever it has to overcome physical or mental stress.

This therefore means that, hormonally speaking, SPRED2-free mice are in a state of permanent stress. The researchers are therefore interpreting the continuous scratching that they observe with these animals as a stress-related compulsion. “The elevated quantity of cortisone simulates stress for them,” says Kai Schuh. No evidence has been found of other conceivable causes for the scratching, such as diabetes.

Illnesses due to defective SPRED2?

The absence of SPRED2 leads to a hormone surplus with too much cortisone and aldosterone – this would suggest that a malfunction of this gene could have something to do with high blood pressure or other illnesses, such as depression. Scientists are also considering genetic causes for both ailments.

“We are not currently aware of any illnesses in humans that are connected to SPRED2,” says Professor Schuh. But this could all change, as the example of the closely related SPRED1 gene shows: geneticists only recently proved for the first time that a defect to this gene is the sole cause of neurofibromatosis, tumor-like growths of the nerve tissue.

Next steps for the researchers

There are many questions relating to the function of the SPRED2 protein that the Würzburg researchers have yet to answer. They want to work with neurophysiologists to analyze why the synapses in the brain are overactive without the protein. They are also looking in nerve cells for molecules that interact with SPRED2.

Are the mice really scratching because the hormones are simulating a stress situation for them? Behavioral experiments, conducted in collaboration with Professor Klaus-Peter Lesch from the Department of Psychiatry, should answer this question. The scientists are also planning to administer a common antidepressant to the “stressed” animals as an experiment to see whether it might alleviate the symptoms at all.

Identification of Sprouty-related protein with EVH-1 domain (SPRED) 2 as a negative regulator of the Hypothalamic-Pituitary-Adrenal (HPA) axis, Melanie Ullrich, Karin Bundschu, Peter M. Benz, Marco Abesser, Ruth Freudinger, Tobias Fischer, Julia Ullrich, Thomas Renne, Ulrich Walter, and Kai Schuh, The Journal of Biological Chemistry, Vol. 286, Issue 11, 9477-9488, March 18, 2011, DOI 10.1074/jbc.M110.171306

Contact

Prof. Dr. Kai Schuh, Institute of Physiology at the University of Würzburg, T +49 (0)931 31-82740, kai.schuh@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biological Chemistry SPRED2 adrenal cortex blood pressure nerve cell

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>