Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the stress brake fails

21.03.2011
First discovered ten years ago, it is now the subject of new findings relating to its function: the protein SPRED2 inhibits the hormonal stress response in the body. Whether it also plays a role in the development of illnesses has yet to be established.

SPRED2: This protein is found in humans and other mammals. Among those who discovered it is a team of scientists from the University of Würzburg led by Kai Schuh. The professor is researching the function that this protein performs. In this area, he and his doctoral student Melanie Ullrich as well as other colleagues from Würzburg, Ulm, and Stockholm have now made new findings that are reported in the Journal of Biological Chemistry.

Insights into the function of the protein were gained by the scientists using mice that lack the SPRED2 gene and are therefore unable to create the protein. These animals demonstrate unusual behavior: they drink twice as much as normal mice and scratch themselves extremely often, such as behind the ears.

Abnormal hormonal states

Why this abnormal behavior? To clarify this, the researchers from the University of Würzburg’s Institute of Physiology analyzed the organism of these animals very closely. One of the discoveries they made were significantly elevated quantities of the stress hormone cortisone and of the hormone aldosterone. The latter causes an increase in the concentration of salt in the blood, thereby raising blood pressure. Consequently, the mice drink more water so they can expel the excess salt more successfully.

The studies revealed other striking irregularities. The synapses in the brain release a greater number of transmitters. There is also an overabundance of the hormones CRH and ACTH, which are formed in the brain and the pituitary gland: these two transmitters in a signal chain control the production of the hormones cortisone and aldosterone in the adrenal cortex.

SPRED2, an inhibitor protein

The researchers concluded that if the organism is missing the protein SPRED2 the hormonal signal chain from the brain to the pituitary gland to the adrenal cortex is activated far too strongly. It would appear that the protein has the effect of slowing down this system that the organism sets in motion whenever it has to overcome physical or mental stress.

This therefore means that, hormonally speaking, SPRED2-free mice are in a state of permanent stress. The researchers are therefore interpreting the continuous scratching that they observe with these animals as a stress-related compulsion. “The elevated quantity of cortisone simulates stress for them,” says Kai Schuh. No evidence has been found of other conceivable causes for the scratching, such as diabetes.

Illnesses due to defective SPRED2?

The absence of SPRED2 leads to a hormone surplus with too much cortisone and aldosterone – this would suggest that a malfunction of this gene could have something to do with high blood pressure or other illnesses, such as depression. Scientists are also considering genetic causes for both ailments.

“We are not currently aware of any illnesses in humans that are connected to SPRED2,” says Professor Schuh. But this could all change, as the example of the closely related SPRED1 gene shows: geneticists only recently proved for the first time that a defect to this gene is the sole cause of neurofibromatosis, tumor-like growths of the nerve tissue.

Next steps for the researchers

There are many questions relating to the function of the SPRED2 protein that the Würzburg researchers have yet to answer. They want to work with neurophysiologists to analyze why the synapses in the brain are overactive without the protein. They are also looking in nerve cells for molecules that interact with SPRED2.

Are the mice really scratching because the hormones are simulating a stress situation for them? Behavioral experiments, conducted in collaboration with Professor Klaus-Peter Lesch from the Department of Psychiatry, should answer this question. The scientists are also planning to administer a common antidepressant to the “stressed” animals as an experiment to see whether it might alleviate the symptoms at all.

Identification of Sprouty-related protein with EVH-1 domain (SPRED) 2 as a negative regulator of the Hypothalamic-Pituitary-Adrenal (HPA) axis, Melanie Ullrich, Karin Bundschu, Peter M. Benz, Marco Abesser, Ruth Freudinger, Tobias Fischer, Julia Ullrich, Thomas Renne, Ulrich Walter, and Kai Schuh, The Journal of Biological Chemistry, Vol. 286, Issue 11, 9477-9488, March 18, 2011, DOI 10.1074/jbc.M110.171306

Contact

Prof. Dr. Kai Schuh, Institute of Physiology at the University of Würzburg, T +49 (0)931 31-82740, kai.schuh@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biological Chemistry SPRED2 adrenal cortex blood pressure nerve cell

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>