Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the stress brake fails

21.03.2011
First discovered ten years ago, it is now the subject of new findings relating to its function: the protein SPRED2 inhibits the hormonal stress response in the body. Whether it also plays a role in the development of illnesses has yet to be established.

SPRED2: This protein is found in humans and other mammals. Among those who discovered it is a team of scientists from the University of Würzburg led by Kai Schuh. The professor is researching the function that this protein performs. In this area, he and his doctoral student Melanie Ullrich as well as other colleagues from Würzburg, Ulm, and Stockholm have now made new findings that are reported in the Journal of Biological Chemistry.

Insights into the function of the protein were gained by the scientists using mice that lack the SPRED2 gene and are therefore unable to create the protein. These animals demonstrate unusual behavior: they drink twice as much as normal mice and scratch themselves extremely often, such as behind the ears.

Abnormal hormonal states

Why this abnormal behavior? To clarify this, the researchers from the University of Würzburg’s Institute of Physiology analyzed the organism of these animals very closely. One of the discoveries they made were significantly elevated quantities of the stress hormone cortisone and of the hormone aldosterone. The latter causes an increase in the concentration of salt in the blood, thereby raising blood pressure. Consequently, the mice drink more water so they can expel the excess salt more successfully.

The studies revealed other striking irregularities. The synapses in the brain release a greater number of transmitters. There is also an overabundance of the hormones CRH and ACTH, which are formed in the brain and the pituitary gland: these two transmitters in a signal chain control the production of the hormones cortisone and aldosterone in the adrenal cortex.

SPRED2, an inhibitor protein

The researchers concluded that if the organism is missing the protein SPRED2 the hormonal signal chain from the brain to the pituitary gland to the adrenal cortex is activated far too strongly. It would appear that the protein has the effect of slowing down this system that the organism sets in motion whenever it has to overcome physical or mental stress.

This therefore means that, hormonally speaking, SPRED2-free mice are in a state of permanent stress. The researchers are therefore interpreting the continuous scratching that they observe with these animals as a stress-related compulsion. “The elevated quantity of cortisone simulates stress for them,” says Kai Schuh. No evidence has been found of other conceivable causes for the scratching, such as diabetes.

Illnesses due to defective SPRED2?

The absence of SPRED2 leads to a hormone surplus with too much cortisone and aldosterone – this would suggest that a malfunction of this gene could have something to do with high blood pressure or other illnesses, such as depression. Scientists are also considering genetic causes for both ailments.

“We are not currently aware of any illnesses in humans that are connected to SPRED2,” says Professor Schuh. But this could all change, as the example of the closely related SPRED1 gene shows: geneticists only recently proved for the first time that a defect to this gene is the sole cause of neurofibromatosis, tumor-like growths of the nerve tissue.

Next steps for the researchers

There are many questions relating to the function of the SPRED2 protein that the Würzburg researchers have yet to answer. They want to work with neurophysiologists to analyze why the synapses in the brain are overactive without the protein. They are also looking in nerve cells for molecules that interact with SPRED2.

Are the mice really scratching because the hormones are simulating a stress situation for them? Behavioral experiments, conducted in collaboration with Professor Klaus-Peter Lesch from the Department of Psychiatry, should answer this question. The scientists are also planning to administer a common antidepressant to the “stressed” animals as an experiment to see whether it might alleviate the symptoms at all.

Identification of Sprouty-related protein with EVH-1 domain (SPRED) 2 as a negative regulator of the Hypothalamic-Pituitary-Adrenal (HPA) axis, Melanie Ullrich, Karin Bundschu, Peter M. Benz, Marco Abesser, Ruth Freudinger, Tobias Fischer, Julia Ullrich, Thomas Renne, Ulrich Walter, and Kai Schuh, The Journal of Biological Chemistry, Vol. 286, Issue 11, 9477-9488, March 18, 2011, DOI 10.1074/jbc.M110.171306

Contact

Prof. Dr. Kai Schuh, Institute of Physiology at the University of Würzburg, T +49 (0)931 31-82740, kai.schuh@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biological Chemistry SPRED2 adrenal cortex blood pressure nerve cell

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>