Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First Strawberry Genome Sequence Promises Better Berries

An international team of researchers, including several from the University of New Hampshire, have completed the first DNA sequence of any strawberry plant, giving breeders much-needed tools to create tastier, healthier strawberries.

Tom Davis, professor of biological sciences at UNH, and postdoctoral researcher Bo Liu were significant contributors to the genome sequence of the woodland strawberry, which was published last month in the journal Nature Genetics.

“We now have a resource for everybody who’s interested in strawberry genetics. We can answer questions that before would have been impossible to address,” says Davis, who has been working on the strawberry genome project since 2006 as part of the international Strawberry Genome Sequencing Consortium.

For instance, says Davis, breeders can now look at the DNA “fingerprint” of strawberry plants to more easily breed those with enhanced flavor, aroma, or antioxidant properties. Or they could breed more disease-resistant berries, decreasing the significant amount of spraying that cultivated strawberries currently need to thrive and thus enhancing the berry’s healthful qualities.

Further, the woodland strawberry is a member of the Rosaceae family, which includes apples, peaches, cherries, raspberries, and almonds, all economically important and popular crops; researchers say the DNA sequence of the strawberry genome will inform the breeding of these other fruits. “We can now begin to understand how evolution works at the level of the genome on this family of plants we all enjoy,” says Davis.

The genome sequencing effort, led by researchers at the University of Florida and Virginia Tech, found that the woodland strawberry -- Fragaria vesca – has240 million base pairs of DNA (compared to 3 billion for humans), making it one of the smallest genomes of economically significant plants. The consortium focused first on sequencing the wild woodland strawberry because its cultivated cousins, all hybrids, are far more complex.

Building upon prior publications in which he described a one percent genomic sampling of a native New Hampshire wild strawberry, Davis played multiple roles in genome project planning, data interpretation, and manuscript preparation. Liu’s unique contribution to this effort was to independently document the locations of specific sequences called ribosomal gene clusters on the chromosomes themselves, using an advanced microscopic technique known as fluorescent in situ hybridization.

The Nature Genetics paper, “The genome of the woodland strawberry,” is available here: By fortuitous coincidence, the complete genomic sequence of another delectable plant species, Theobroma cacao (chocolate), was published in the same journal issue. More information on strawberry genome work at UNH is at The UNH component of this work was supported, in part, by the New Hampshire Agricultural Experiment Station and by a grant from the U.S. Department of Agriculture (National Research Initiative) Plant Genome program.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Beth Potier | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>