Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Strawberry Genome Sequence Promises Better Berries

11.01.2011
An international team of researchers, including several from the University of New Hampshire, have completed the first DNA sequence of any strawberry plant, giving breeders much-needed tools to create tastier, healthier strawberries.

Tom Davis, professor of biological sciences at UNH, and postdoctoral researcher Bo Liu were significant contributors to the genome sequence of the woodland strawberry, which was published last month in the journal Nature Genetics.

“We now have a resource for everybody who’s interested in strawberry genetics. We can answer questions that before would have been impossible to address,” says Davis, who has been working on the strawberry genome project since 2006 as part of the international Strawberry Genome Sequencing Consortium.

For instance, says Davis, breeders can now look at the DNA “fingerprint” of strawberry plants to more easily breed those with enhanced flavor, aroma, or antioxidant properties. Or they could breed more disease-resistant berries, decreasing the significant amount of spraying that cultivated strawberries currently need to thrive and thus enhancing the berry’s healthful qualities.

Further, the woodland strawberry is a member of the Rosaceae family, which includes apples, peaches, cherries, raspberries, and almonds, all economically important and popular crops; researchers say the DNA sequence of the strawberry genome will inform the breeding of these other fruits. “We can now begin to understand how evolution works at the level of the genome on this family of plants we all enjoy,” says Davis.

The genome sequencing effort, led by researchers at the University of Florida and Virginia Tech, found that the woodland strawberry -- Fragaria vesca – has240 million base pairs of DNA (compared to 3 billion for humans), making it one of the smallest genomes of economically significant plants. The consortium focused first on sequencing the wild woodland strawberry because its cultivated cousins, all hybrids, are far more complex.

Building upon prior publications in which he described a one percent genomic sampling of a native New Hampshire wild strawberry, Davis played multiple roles in genome project planning, data interpretation, and manuscript preparation. Liu’s unique contribution to this effort was to independently document the locations of specific sequences called ribosomal gene clusters on the chromosomes themselves, using an advanced microscopic technique known as fluorescent in situ hybridization.

The Nature Genetics paper, “The genome of the woodland strawberry,” is available here: http://strawberrygenes.unh.edu/Published.740%5B1%5D.pdf. By fortuitous coincidence, the complete genomic sequence of another delectable plant species, Theobroma cacao (chocolate), was published in the same journal issue. More information on strawberry genome work at UNH is at strawberrygenes.unh.edu. The UNH component of this work was supported, in part, by the New Hampshire Agricultural Experiment Station and by a grant from the U.S. Department of Agriculture (National Research Initiative) Plant Genome program.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu/news/cj_nr/2011/jan/bp10genome.cfm
http://www.unh.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>